清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Alzheimer's Disease Detection in EEG Sleep Signals

脑电图 睡眠(系统调用) 疾病 计算机科学 人工智能 语音识别 医学 模式识别(心理学) 精神科 内科学 操作系统
作者
Lorena Gallego-Viñarás,Juan Miguel Mira-Tomás,Anna Michela Gaeta,Gerard Piñol‐Ripoll,Ferrán Barbé,Pablo M. Olmos,Arrate Muñoz‐Barrutia
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3478380
摘要

Alzheimer's disease (AD) and sleep disorders exhibit a close association, where disruptions in sleep patterns often precede the onset of Mild Cognitive Impairment (MCI) and early-stage AD. This study delves into the potential of utilizing sleep-related electroencephalography (EEG) signals acquired through polysomnography (PSG) for the early detection of AD. Our primary focus is on exploring semi-supervised Deep Learning techniques for the classification of EEG signals due to the clinical scenario characterized by the limited data availability. The methodology entails testing and comparing the performance of semi-supervised models, benchmarked against an unsupervised and a supervised model. The study highlights the significance of spatial and temporal analysis capabilities, conducting independent analyses of each sleep stage. Results demonstrate the effectiveness of one semi-supervised model in leveraging limited labeled data, achieving stable metrics across all sleep stages, and reaching 90% accuracy in its supervised form. Comparative analyses reveal this superior performance over the unsupervised model, while the supervised model ranges between 92-94% . These findings underscore the potential of semi-supervised models in early AD detection, particularly in overcoming the challenges associated with the scarcity of labeled data. Ablation tests affirm the critical role of spatio-temporal feature extraction in semi-supervised predictive performance, and t-SNE visualizations validate the model's proficiency in distinguishing AD patterns. Overall, this research contributes to the advancement of AD detection through innovative Deep Learning approaches, highlighting the crucial role of semi-supervised learning in addressing data limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赛韓吧完成签到 ,获得积分10
32秒前
32秒前
无悔完成签到 ,获得积分10
32秒前
52秒前
tt发布了新的文献求助10
56秒前
1分钟前
1分钟前
1分钟前
可靠的书桃完成签到 ,获得积分10
1分钟前
1分钟前
Raunio完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
胜天半子完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
砳熠完成签到 ,获得积分10
2分钟前
2分钟前
Cheney完成签到 ,获得积分10
2分钟前
铎铎铎完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
LJ_2完成签到 ,获得积分10
3分钟前
Kevin完成签到,获得积分10
3分钟前
3分钟前
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
追寻青柏完成签到,获得积分10
4分钟前
4分钟前
4分钟前
爱听歌契完成签到 ,获得积分10
5分钟前
拓跋雨梅完成签到 ,获得积分0
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054407
关于积分的说明 9042000
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505283
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887