Machine Learning Screening and Validation of PANoptosis-Related Gene Signatures in Sepsis

败血症 列线图 免疫系统 计算生物学 医学 免疫学 生物 生物信息学 机器学习 肿瘤科 计算机科学
作者
Jingjing Xu,Mingyu Zhu,Pengxiang Luo,Yuanqi Gong
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 17: 4765-4780
标识
DOI:10.2147/jir.s461809
摘要

Background: Sepsis is a syndrome marked by life-threatening organ dysfunction and a disrupted host immune response to infection. PANoptosis is a recent conceptual development, which emphasises the interconnectedness among multiple programmed cell deaths in various diseases. Nevertheless, the role of PANoptosis in sepsis is still unclear. Methods: We utilized the GSE65682 dataset to identify PANoptosis-related genes (PRGs) and associated immune characteristics in sepsis, classified sepsis samples based on PRGs using the ConsensusClusterPlus method and applied the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to identify cluster-specific hub genes. Based on PANoptosis -specific DEGs, we compared results from machine learning models and the best-performing model was selected. Predictive efficiency was validated through external dataset, nomogram, survival analysis, quantitative real-time PCR, and western blot. Results: The expression levels of PRGs were generally dysregulated in sepsis patients compared with normal samples, and higher PRGs expression correlated with increased immune cell infiltration. In addition, two distinct PANoptosis-related clusters were defined, and functional analysis indicated that DEGs associated with these clusters were primarily linked to immune-related pathways. The SVM model was selected as best-performing model, with lower residuals and the highest area under the curve (AUC = 0.967), which was then validated in an external dataset (AUC = 0.989) and through in vivo experiments. Additional validation through nomogram and survival analysis further confirmed its substantial predictive efficacy. Conclusion: Our findings exposed the intricate association between PANoptosis and sepsis, offering important insights on sepsis diagnosis and potential therapeutic targets. Keywords: sepsis, PANoptosis, immune infiltration, machine learning, prediction model
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
emma发布了新的文献求助30
刚刚
dong发布了新的文献求助10
刚刚
xuuuuu完成签到,获得积分10
1秒前
阿泽发布了新的文献求助10
1秒前
qqwrv发布了新的文献求助10
2秒前
谦让马里奥完成签到,获得积分10
2秒前
qza1995完成签到,获得积分10
2秒前
话家完成签到,获得积分10
2秒前
GGZ完成签到,获得积分10
3秒前
3秒前
11发布了新的文献求助10
3秒前
3秒前
Love发呆发布了新的文献求助10
4秒前
Aaron完成签到,获得积分10
4秒前
redred完成签到,获得积分20
5秒前
5秒前
轩辕峻熙完成签到,获得积分10
5秒前
深情安青应助LV采纳,获得10
5秒前
JamesPei应助整齐的书白采纳,获得10
5秒前
6秒前
研友_ZlxBXZ完成签到,获得积分10
6秒前
领导范儿应助落寞的冰姬采纳,获得20
6秒前
坦率寻雪完成签到,获得积分10
7秒前
redred发布了新的文献求助10
7秒前
小美爱科研完成签到,获得积分10
7秒前
7秒前
7秒前
oncoma完成签到 ,获得积分10
8秒前
许白易发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
606完成签到,获得积分10
9秒前
爆米花应助孔雀翎采纳,获得10
9秒前
小白完成签到,获得积分10
9秒前
兴奋芷发布了新的文献求助10
10秒前
FashionBoy应助阿泽采纳,获得10
11秒前
若什么至完成签到,获得积分10
11秒前
艺阳完成签到,获得积分10
11秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147773
求助须知:如何正确求助?哪些是违规求助? 2798855
关于积分的说明 7831859
捐赠科研通 2455728
什么是DOI,文献DOI怎么找? 1306927
科研通“疑难数据库(出版商)”最低求助积分说明 627945
版权声明 601587