A semi-supervised framework fusing multiple information for knowledge graph entity alignment

计算机科学 知识图 图形 人工智能 情报检索 数据挖掘 理论计算机科学
作者
Zepeng Li,Nengneng Ding,Chenhui Liang,Shuo Cao,Minyu Zhai,Rikui Huang,Zhenwen Zhang,Bin Hu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:259: 125282-125282
标识
DOI:10.1016/j.eswa.2024.125282
摘要

Entity alignment (EA) is a fundamental task for cross linguistic knowledge graphs (KGs) understanding and interaction, which is committed to matching entities from different graphs based on their inherent semantics. Methods based on graph neural networks (GNNs) dominate the EA task, however, the majority of them ignore the higher-order information among entities in the KGs. Meanwhile, as important auxiliary information, the relational semantics, string information of entity names and attribute information of entities are insufficiently exploited during the inference phase. In addition, labeled alignment data is universally insufficient across various datasets, which limits the performance of the model. In this paper, we propose a Semi-supervised EA framework that Comprehensively considers both Structural and Attribute information within KGs (SCSA) to address these problems above. Specifically, our approach first leverages hypergraph neural networks (HGNN) to aggregate relational semantic information and graph convolutional networks (GCNs) with a highway filtering strategy to acquire the embedding representation of entities precisely. Then, we propose a bidirectional filtering technique with a combination of entity, attribute and string values to create pseudo-labeled data and lead the model for iteratively training. We implement our proposed framework on several publicly recognized cross-lingual datasets. The experimental results indicate that our framework outperforms almost all state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丹青完成签到 ,获得积分10
2秒前
bai发布了新的文献求助10
3秒前
大勺发布了新的文献求助10
5秒前
Orange应助慈祥的梦露采纳,获得10
6秒前
泓7完成签到,获得积分20
7秒前
10秒前
粗心的含莲应助由由采纳,获得10
10秒前
李健应助yy超爱看文献采纳,获得10
10秒前
所所应助起起采纳,获得10
11秒前
李健应助初七采纳,获得10
12秒前
乐乐应助白昼采纳,获得10
12秒前
泓7发布了新的文献求助10
13秒前
芊瑶完成签到,获得积分10
13秒前
14秒前
田様应助bai采纳,获得10
15秒前
15秒前
17秒前
17秒前
Orange应助许七安采纳,获得10
18秒前
lmy完成签到 ,获得积分10
18秒前
18秒前
谦让若蕊完成签到,获得积分10
19秒前
19秒前
科研通AI2S应助稳重元菱采纳,获得10
20秒前
庄庄发布了新的文献求助10
20秒前
21秒前
yy超爱看文献完成签到,获得积分10
21秒前
Natalian发布了新的文献求助10
22秒前
一只熊发布了新的文献求助10
22秒前
22秒前
活泼的手机完成签到,获得积分10
22秒前
okko发布了新的文献求助10
23秒前
看见更大的世界完成签到 ,获得积分10
23秒前
芊瑶发布了新的文献求助10
23秒前
Sharyn227发布了新的文献求助10
25秒前
26秒前
今后应助xiaoyi采纳,获得10
27秒前
27秒前
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234164
求助须知:如何正确求助?哪些是违规求助? 2880584
关于积分的说明 8216048
捐赠科研通 2548171
什么是DOI,文献DOI怎么找? 1377575
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302