The temporal distribution of ridership in metro stations from land-use perspective

土地利用 环境科学 主成分分析 运输工程 分布(数学) 空间分布 统计 数学 土木工程 工程类 数学分析
作者
Shian Dai,Liqiang Yu,Lang Song,Ying Li,Xuze Fan
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (9): e0308759-e0308759
标识
DOI:10.1371/journal.pone.0308759
摘要

A reasonable land use development around subway stations can balance the utilization rates of the subway system during peak and off-peak hours, thereby enhancing its service levels and operational efficiency. Analyzing the temporal distribution patterns of passenger flow and their influencing factors is crucial for determining the optimum ratio of each land use type surrounding metro stations. Thus, this paper employs principal component analysis (PCA) at first to investigate the temporal distribution of metro ridership, and identify their main patterns and factor loadings. Then, using geographically weighted regression, the study examines the spatial dependencies between the main component proportions and influencing factors, focusing on Xi’an subway stations. The results indicate that the temporal distribution of passenger flow can be decomposed into three principal components: the first representing commuting characteristics, and the second and third representing regulating functions. The overall distribution is a composite of these components in varying proportions. Residential and educational land uses primarily drive morning and evening peak flows, with residential land use in the city center and peripheral areas having a more pronounced effect compared to transitional areas. Conversely, commercial & office, healthcare, and recreational & park land mitigate peak flows and increase off-peak flows. External hub enhances passenger flow throughout the day, while industrial land use has negligible impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于嗣濠完成签到 ,获得积分10
刚刚
36456657应助CC采纳,获得10
刚刚
优雅山柏发布了新的文献求助10
1秒前
Jacky完成签到,获得积分10
1秒前
脑洞疼应助无情的白桃采纳,获得10
1秒前
mm发布了新的文献求助10
1秒前
2秒前
2秒前
zoko发布了新的文献求助10
2秒前
2秒前
曾经的臻发布了新的文献求助10
2秒前
华仔应助S1mple_gentleman采纳,获得10
2秒前
科研通AI5应助CC采纳,获得10
2秒前
2秒前
3秒前
3秒前
张静静完成签到,获得积分10
4秒前
4秒前
震666发布了新的文献求助30
4秒前
MADKAI发布了新的文献求助10
4秒前
4秒前
117发布了新的文献求助10
4秒前
5秒前
5秒前
酶没美镁完成签到,获得积分10
5秒前
小二郎应助Rui采纳,获得10
5秒前
Libra完成签到,获得积分10
6秒前
雪儿发布了新的文献求助30
6秒前
无悔呀发布了新的文献求助10
6秒前
小巧的可仁完成签到 ,获得积分10
6秒前
6秒前
zhao完成签到,获得积分10
7秒前
masu发布了新的文献求助10
7秒前
冷酷尔琴发布了新的文献求助10
8秒前
Ll发布了新的文献求助10
8秒前
优雅山柏完成签到,获得积分10
8秒前
XinyiZhang发布了新的文献求助10
8秒前
小蘑菇应助yangyang采纳,获得10
8秒前
慕青应助欢欢采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740