Masked Style Transfer for Source-Coherent Image-to-Image Translation

计算机科学 规范化(社会学) 翻译(生物学) 人工智能 加权 图像翻译 图像(数学) 计算机视觉 模式识别(心理学) 转化(遗传学) 信使核糖核酸 放射科 基因 社会学 医学 生物化学 化学 人类学
作者
Filippo Botti,Tomaso Fontanini,Massimo Bertozzi,Andrea Prati
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (17): 7876-7876
标识
DOI:10.3390/app14177876
摘要

The goal of image-to-image translation (I2I) is to translate images from one domain to another while maintaining the content representations. A popular method for I2I translation involves the use of a reference image to guide the transformation process. However, most architectures fail to maintain the input’s main characteristics and produce images that are too similar to the reference during style transfer. In order to avoid this problem, we propose a novel architecture that is able to perform source-coherent translation between multiple domains. Our goal is to preserve the input details during I2I translation by weighting the style code obtained from the reference images before applying it to the source image. Therefore, we choose to mask the reference images in an unsupervised way before extracting the style from them. By doing so, the input characteristics are better maintained while performing the style transfer. As a result, we also increase the diversity in the generated images by extracting the style from the same reference. Additionally, adaptive normalization layers, which are commonly used to inject styles into a model, are substituted with an attention mechanism for the purpose of increasing the quality of the generated images. Several experiments are performed on the CelebA-HQ and AFHQ datasets in order to prove the efficacy of the proposed system. Quantitative results measured using the LPIPS and FID metrics demonstrate the superiority of the proposed architecture compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清一壶完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
可爱番茄完成签到 ,获得积分10
3秒前
PlightG发布了新的文献求助10
4秒前
sanqifeng完成签到,获得积分10
7秒前
8秒前
闻风听雨发布了新的文献求助10
8秒前
9秒前
海带发布了新的文献求助10
9秒前
9秒前
小二郎应助ok采纳,获得10
10秒前
11秒前
朴树朋友完成签到,获得积分10
12秒前
13秒前
dengdeng发布了新的文献求助10
14秒前
MissXia完成签到,获得积分10
14秒前
15秒前
bsyaa发布了新的文献求助10
16秒前
guoli发布了新的文献求助10
18秒前
18秒前
正直千兰完成签到,获得积分10
19秒前
saber完成签到,获得积分10
22秒前
22秒前
高高菠萝完成签到 ,获得积分10
23秒前
23秒前
建建完成签到,获得积分10
24秒前
yym发布了新的文献求助10
25秒前
25秒前
26秒前
27秒前
27秒前
清脆水卉完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
单薄店员发布了新的文献求助10
30秒前
Ava应助海带采纳,获得10
36秒前
37秒前
Ava应助科研通管家采纳,获得30
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499