DNA聚合酶
聚合酶
生物
末端脱氧核苷酸转移酶
生物化学
初级
分子生物学
DNA钳
DNA聚合酶Ⅱ
DNA
遗传学
聚合酶链反应
基因
标记法
逆转录酶
细胞凋亡
作者
Yee-Song Law,Nazreen Abdul Muthaliff,Yifeng Wei,Fu Lin,Huimin Zhao,Ee Lui Ang
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2024-08-02
卷期号:14 (16): 12318-12330
被引量:1
标识
DOI:10.1021/acscatal.4c00756
摘要
The X family of DNA polymerases (PolXs) includes the well-studied mammalian polymerases Polβ, Polλ, Polμ, and terminal deoxynucleotidyl transferase (TdT). The template-independent DNA polymerase activity of TdT has been harnessed for applications in enzymatic de novo DNA synthesis, offering a strategy to overcome the limitations of traditional phosphoramidite-based DNA synthesis methods. Close homologues of the mammalian PolXs are present in other vertebrates, while invertebrate PolXs remain unexplored. In this study, we characterize an invertebrate PolX from the extremotolerant tardigrade Ramazzottius varieornatus (RvPolX), and demonstrate that it possesses modest template-independent DNA polymerase activity, despite limited homology to mammalian PolXs (21% sequence identity with TdT). Through a combination of structural modeling, targeted mutagenesis of active site residues, and high-throughput screening under stringent high salt conditions, we identified a synergistic combination of two mutations (G513A and R522I) that led to a significant increase in activity for the incorporation of all four nucleotides, particularly dATP (∼35-fold), yielding a salt-tolerant polymerase with overall higher activity and substrate promiscuity. Under high salt conditions, the engineered RvPolX displays an activity comparable to TdT and a nucleotide selectivity complementary to TdT. As a template-independent polymerase with a low homology to TdT, RvPolX provides an alternative scaffold for further engineering in various biotechnological applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI