韧性
电导率
自愈水凝胶
材料科学
聚乙烯醇
化学工程
耐久性
复合材料
纳米技术
化学
高分子化学
工程类
物理化学
作者
Wendong Zhu,Yangyang Zhang,Shunfu Huang,Lihong Geng,Jianming Wu,Guojun Mao,Xiangfang Peng,Ya Cheng
标识
DOI:10.1016/j.cej.2024.154409
摘要
Ionic conducting hydrogel acted as a promising candidate in flexible electronic device, however, the intrinsic properties of weak mechanical strength, conductivity and environmental instability still are the challenging task. Herein, an assembled polysaccharide network (acetylated distarch phosphate) regulated polyvinyl alcohol (PVA/ADSP) hydrogel is fabricated via one-step freeze–thaw method, the stress, elongation at break, elastic modulus, and toughness could reach 2.26 MPa, 818.60 %, 0.95 MPa, and 12.23 kJ/m3, respectively. At the same time, the binary solution interlocked structure and salt are introduced into the PVA/ADSP hydrogel realizing the great environmental stability (water-retention and anti-freezing) and conductivity (3.59 S/m). PVA/ADSP hydrogel act as strain sensor presenting the great responsibility (128 ms), strain sensitivity (GF=1.82 at 350–500 % of strain) and durability. On account of the excellent sensing characteristics, the PVA/ADSP hydrogel could reliably, accurately and consistently detect most of human exercises and subtle physiological activities (electrocardiography) in real-time. Moreover, PVA/ADSP hydrogel is also utilized to control robotic hand realizing the human–machine interaction. This work provides a novelty regulated approach for conducting hydrogel via self-assembled polysaccharide network, which contributes to the innovative advancement of flexible wearable electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI