癌症
自愈水凝胶
癌症干细胞
癌症研究
医学
癌细胞
化学
内科学
有机化学
作者
Fashun Li,Zhipeng Li,Chen Wei,Long Xu,Yan Liang,Jianqin Yan,Yifei Li,Bin He,Chong Sun
标识
DOI:10.1016/j.biopha.2024.117486
摘要
Cancer stem cells (CSCs) are a major hindrance to clinical cancer treatment. Owing to their high tumorigenic and metastatic potential, CSCs are vital in malignant tumor initiation, growth, metastasis, and therapeutic resistance, leading to tumorigenesis and recurrence. Compared with normal tumor cells, CSCs express high levels of surface markers (CD44, CD90, CD133, etc.) and activate specific signaling pathways (Wnt/β-catenin, Notch, and Hedgehog). Although Current drug delivery systems (DDS) precisely target CSCs, the heterogeneity and multidrug resistance of CSCs impede CSC isolation and screening. Conversely, hydrogel DDSs exhibit good biocompatibility and high drug delivery efficiency. Hydrogels are three-dimensional (3D) spatial structures for drug encapsulation that facilitate the controlled release of bioactive molecules. Hence, hydrogels can be loaded with drugs to precisely target CSCs. Their 3D structure can also culture non-CSCs and facilitate their transformation into CSCs. for identification and isolation. Given that their elastic modulus and stiffness characteristics reflect those of the cellular microenvironment, hydrogels can simulate extracellular matrix pathways and markers to regulate CSCs, disrupting the equilibrium between CSC and non-CSC transformation. This article reviews the CSC microenvironment, metabolism, signaling pathway, and surface markers. Additionally, we summarize the existing CSC targeting strategies and explore the application of hydrogels for CSC screening and treatment. Finally, we discuss potential advances in CSC research that may lead to curative measures for tumors through targeted and precise attacks on CSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI