In-Depth Analysis of Molecular Network Based on Liquid Chromatography Coupled with Tandem Mass Spectrometry in Natural Products: Importance of Redundant Nodes Discovery

化学 串联质谱法 串联 质谱法 色谱法 液相色谱-质谱法 航空航天工程 工程类
作者
Yuhao Zhang,Jingyu Liao,Wanqi Le,Weidong Zhang,Gaosong Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:4
标识
DOI:10.1021/acs.analchem.4c02230
摘要

The identification of molecules within complex mixtures is a major bottleneck in natural products (NPs) research. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as the main tool for the high-throughput characterization of NPs. The large amount of data sets by LC-MS/MS presents a challenge for data processing and interpretation, and the LC-MS/MS molecular network (MN) is one of the most prominent tools for analyzing large MS/MS data sets, widely used for rapid classification, identification, and structural speculation of unknown compounds. However, the existence of a large number of redundant nodes leads to false-positive results. To solve this problem, we proposed the in-depth analysis of MN. In this study, in-depth analysis of MN of five NPs representing the common structures of saponin, steroid, flavonoid, alkaloid, and phenolic acid revealed the presence of redundant nodes (including other adducts, isotope, and in-source fragmentation) in addition to the normal nodes, which can lead to false-positive identification results. Additionally, the reasons for different redundant nodes are discussed and experimentally verified, and it was found that the impact of redundant nodes can be mitigated by optimizing the experimental conditions and employing Feature-Based Molecular Networking. Furthermore, Ion Identity Molecular Networking can rapidly discover and screen redundant nodes, simplifying the in-depth analysis of MN and improving the network connectivity of structurally related molecules. Finally, a combination formulation of 7 NPs is used as an example to provide a guide for in-depth analysis of MN for comprehensive characterization of complex systems. This study highlights the importance of an in-depth analysis of MN for better understanding and utilization of MS/MS data in complex systems to reduce the false-positive rate of identification by screening and filtering redundant nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯芹菜完成签到,获得积分10
刚刚
zzz发布了新的文献求助10
1秒前
SYanan完成签到 ,获得积分10
1秒前
猪肉超人菜婴蚊完成签到,获得积分10
3秒前
4秒前
科研通AI5应助辉hui采纳,获得10
5秒前
科研通AI5应助qi采纳,获得10
5秒前
5秒前
田様应助人之路采纳,获得10
6秒前
one完成签到 ,获得积分10
7秒前
打打应助小孙孙采纳,获得10
7秒前
DustRain发布了新的文献求助10
8秒前
尊敬雅容发布了新的文献求助60
8秒前
222完成签到,获得积分10
8秒前
都很难完成签到,获得积分20
8秒前
orixero应助美好蜻蜓采纳,获得10
9秒前
10秒前
11秒前
pluto应助Gleast采纳,获得20
11秒前
one发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
15秒前
爆米花应助星移采纳,获得10
15秒前
我是你爹发布了新的文献求助10
17秒前
taotao发布了新的文献求助10
18秒前
zhu发布了新的文献求助10
18秒前
舒适不平发布了新的文献求助10
19秒前
wanci应助xiaoxiao采纳,获得10
20秒前
22秒前
微笑的冰之完成签到,获得积分10
22秒前
nature24应助樂酉采纳,获得10
23秒前
我是你爹完成签到,获得积分10
23秒前
隐形曼青应助科研小白采纳,获得10
24秒前
25秒前
25秒前
xxxllllll发布了新的文献求助10
25秒前
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668076
求助须知:如何正确求助?哪些是违规求助? 3226524
关于积分的说明 9769880
捐赠科研通 2936484
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759677
科研通“疑难数据库(出版商)”最低求助积分说明 735474