A Multiscale Simulation on Aluminum Ion Implantation-Induced Defects in 4H-SiC MOSFETs

材料科学 兴奋剂 离子注入 晶体缺陷 离子 MOSFET 光电子学 格子(音乐) 泄漏(经济) 带隙 分子动力学 电压 纳米技术 凝聚态物理 电气工程 化学 计算化学 晶体管 经济 有机化学 宏观经济学 工程类 物理 声学
作者
Sheng Wang,H. Lan,Qiwei Shangguan,Yawei Lv,Changzhong Jiang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (14): 2758-2758
标识
DOI:10.3390/electronics13142758
摘要

Aluminum (Al) ion implantation is one of the most important technologies in SiC device manufacturing processes due to its ability to produce the p-type doping effect, which is essential to building p–n junctions and blocking high voltages. However, besides the doping effect, defects are also probably induced by the implantation. Here, the impacts of Al ion implantation-induced defects on 4H-SiC MOSFET channel transport behaviors are studied using a multiscale simulation flow, including the molecular dynamics (MD) simulation, density functional theory (DFT) calculation, and tight-binding (TB) model-based quantum transport simulation. The simulation results show that an Al ion can not only replace a Si lattice site to realize the p-doping effect, but it can also replace the C lattice site to induce mid-gap trap levels or become an interstitial to induce the n-doping effect. Moreover, the implantation tends to bring additional point defects to the 4H-SiC body region near the Al ions, which will lead to more complicated coupling effects between them, such as degrading the p-type doping effect by trapping free hole carriers and inducing new trap states at the 4H-SiC bandgap. The quantum transport simulations indicate that these coupling effects will impede local electron transports, compensating for the doping effect and increasing the leakage current of the 4H-SiC MOSFET. In this study, the complicated coupling effects between the implanted Al ions and the implantation-induced point defects are revealed, which provides new references for experiments to increase the accepter activation rate and restrain the defect effect in SiC devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助fighting采纳,获得10
1秒前
4秒前
飘着的鬼发布了新的文献求助10
8秒前
甜美无剑应助科研通管家采纳,获得30
9秒前
cherlie应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
10秒前
cherlie应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
十二应助科研通管家采纳,获得10
10秒前
十二应助科研通管家采纳,获得10
10秒前
10秒前
温暖的涵易完成签到,获得积分0
10秒前
10秒前
10秒前
小木完成签到,获得积分10
11秒前
叶光大完成签到 ,获得积分10
12秒前
12秒前
大宝慧发布了新的文献求助10
12秒前
成就迎梅完成签到,获得积分10
12秒前
单于思雁完成签到,获得积分10
13秒前
YYYCCCCC完成签到,获得积分10
13秒前
19秒前
猪猪hero发布了新的文献求助10
19秒前
失眠锦程完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
大宝慧完成签到,获得积分10
21秒前
全力以赴先生完成签到,获得积分10
22秒前
25秒前
26秒前
28秒前
是玥玥啊发布了新的文献求助10
28秒前
进退须臾完成签到,获得积分10
32秒前
Steven发布了新的文献求助20
33秒前
ycool发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309