清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

How Can Recommender Systems Benefit from Large Language Models: A Survey

推荐系统 计算机科学 万维网 情报检索 数据科学
作者
Jianghao Lin,Xinyi Dai,Yunjia Xi,Weiwen Liu,Bo Chen,Hao Zhang,Yong Liu,Chuhan Wu,Xiangyang Li,Chenxu Zhu,Huifeng Guo,Yong Yu,Ruiming Tang,Weinan Zhang
出处
期刊:ACM Transactions on Information Systems 被引量:25
标识
DOI:10.1145/3678004
摘要

With the rapid development of online services and web applications, recommender systems (RS) have become increasingly indispensable for mitigating information overload and matching users’ information needs by providing personalized suggestions over items. Although the RS research community has made remarkable progress over the past decades, conventional recommendation models (CRM) still have some limitations, e.g. , lacking open-domain world knowledge, and difficulties in comprehending users’ underlying preferences and motivations. Meanwhile, large language models (LLM) have shown impressive general intelligence and human-like capabilities for various natural language processing (NLP) tasks, which mainly stem from their extensive open-world knowledge, logical and commonsense reasoning abilities, as well as their comprehension of human culture and society. Consequently, the emergence of LLM is inspiring the design of recommender systems and pointing out a promising research direction, i.e. , whether we can incorporate LLM and benefit from their common knowledge and capabilities to compensate for the limitations of CRM. In this paper, we conduct a comprehensive survey on this research direction, and draw a bird’s-eye view from the perspective of the whole pipeline in real-world recommender systems. Specifically, we summarize existing research works from two orthogonal aspects: where and how to adapt LLM to RS. For the “ WHERE ” question, we discuss the roles that LLM could play in different stages of the recommendation pipeline, i.e. , feature engineering, feature encoder, scoring/ranking function, user interaction, and pipeline controller. For the “ HOW ” question, we investigate the training and inference strategies, resulting in two fine-grained taxonomy criteria, i.e. , whether to tune LLM or not during training, and whether to involve conventional recommendation models for inference. Detailed analysis and general development paths are provided for both “WHERE” and “HOW” questions, respectively. Then, we highlight the key challenges in adapting LLM to RS from three aspects, i.e. , efficiency, effectiveness, and ethics. Finally, we summarize the survey and discuss the future prospects. To further facilitate the research community of LLM-enhanced recommender systems, we actively maintain a GitHub repository for papers and other related resources in this rising direction 1 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻的纸鹤完成签到 ,获得积分10
10秒前
庄怀逸完成签到 ,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
柯夜天完成签到,获得积分10
21秒前
jie完成签到 ,获得积分10
22秒前
摸鱼主编magazine完成签到,获得积分10
34秒前
林利芳完成签到 ,获得积分10
35秒前
jameslee04完成签到 ,获得积分10
35秒前
阜睿完成签到 ,获得积分10
54秒前
SH123完成签到 ,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
永不言弃完成签到 ,获得积分10
1分钟前
asdwind完成签到,获得积分10
1分钟前
66完成签到 ,获得积分10
1分钟前
xue112完成签到 ,获得积分10
1分钟前
合适的寄灵完成签到 ,获得积分10
1分钟前
粗心的飞槐完成签到 ,获得积分10
2分钟前
Feng完成签到,获得积分20
2分钟前
longer完成签到 ,获得积分10
2分钟前
默默的筝完成签到 ,获得积分10
2分钟前
科研通AI5应助Kylin采纳,获得10
2分钟前
南浔完成签到 ,获得积分10
2分钟前
熊二完成签到,获得积分10
3分钟前
路过完成签到,获得积分10
3分钟前
zhenzhen完成签到,获得积分10
3分钟前
Connie完成签到,获得积分10
3分钟前
FloppyWow发布了新的文献求助10
3分钟前
FloppyWow发布了新的文献求助10
3分钟前
FloppyWow发布了新的文献求助10
3分钟前
FloppyWow发布了新的文献求助10
3分钟前
FloppyWow发布了新的文献求助10
3分钟前
FloppyWow发布了新的文献求助10
3分钟前
luckygirl完成签到 ,获得积分10
3分钟前
自然的含蕾完成签到 ,获得积分10
4分钟前
FloppyWow发布了新的文献求助10
4分钟前
瘦瘦小萱完成签到 ,获得积分10
4分钟前
隐形曼青应助颜林林采纳,获得10
4分钟前
FloppyWow发布了新的文献求助10
4分钟前
jimmy_bytheway完成签到,获得积分0
4分钟前
FloppyWow发布了新的文献求助10
4分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491367
求助须知:如何正确求助?哪些是违规求助? 3077983
关于积分的说明 9151323
捐赠科研通 2770626
什么是DOI,文献DOI怎么找? 1520561
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702323