亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How Can Recommender Systems Benefit from Large Language Models: A Survey

推荐系统 计算机科学 万维网 情报检索 数据科学
作者
Jianghao Lin,Xinyi Dai,Yunjia Xi,Weiwen Liu,Bo Chen,Hao Zhang,Yong Liu,Chuhan Wu,Xiangyang Li,Chenxu Zhu,Huifeng Guo,Yong Yu,Ruiming Tang,Weinan Zhang
标识
DOI:10.1145/3678004
摘要

With the rapid development of online services and web applications, recommender systems (RS) have become increasingly indispensable for mitigating information overload and matching users’ information needs by providing personalized suggestions over items. Although the RS research community has made remarkable progress over the past decades, conventional recommendation models (CRM) still have some limitations, e.g., lacking open-domain world knowledge, and difficulties in comprehending users’ underlying preferences and motivations. Meanwhile, large language models (LLM) have shown impressive general intelligence and human-like capabilities for various natural language processing (NLP) tasks, which mainly stem from their extensive open-world knowledge, logical and commonsense reasoning abilities, as well as their comprehension of human culture and society. Consequently, the emergence of LLM is inspiring the design of RS and pointing out a promising research direction, i.e., whether we can incorporate LLM and benefit from their common knowledge and capabilities to compensate for the limitations of CRM. In this article, we conduct a comprehensive survey on this research direction, and draw a bird’s-eye view from the perspective of the whole pipeline in real-world RS. Specifically, we summarize existing research works from two orthogonal aspects: where and how to adapt LLM to RS. For the “ WHERE ” question, we discuss the roles that LLM could play in different stages of the recommendation pipeline, i.e., feature engineering, feature encoder, scoring/ranking function, user interaction, and pipeline controller. For the “ HOW ” question, we investigate the training and inference strategies, resulting in two fine-grained taxonomy criteria, i.e., whether to tune LLM or not during training, and whether to involve CRM for inference. Detailed analysis and general development paths are provided for both “WHERE” and “HOW” questions, respectively. Then, we highlight the key challenges in adapting LLM to RS from three aspects, i.e., efficiency, effectiveness, and ethics. Finally, we summarize the survey and discuss the future prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
无情的琳发布了新的文献求助10
10秒前
30秒前
40秒前
CAOHOU应助路漫漫其修远兮采纳,获得10
43秒前
松林揽月发布了新的文献求助10
45秒前
Criminology34应助科研通管家采纳,获得10
56秒前
Jasper应助路漫漫其修远兮采纳,获得10
1分钟前
万能图书馆应助愿景采纳,获得10
1分钟前
桐桐应助Wei采纳,获得10
1分钟前
1分钟前
7_2U1发布了新的文献求助10
1分钟前
1分钟前
7_2U1完成签到,获得积分20
1分钟前
1分钟前
1分钟前
Panther完成签到,获得积分10
1分钟前
2分钟前
RE完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
paannqi完成签到,获得积分10
2分钟前
zone54188完成签到,获得积分10
2分钟前
2分钟前
Wa1Zh0u发布了新的文献求助30
2分钟前
嘻嘻完成签到,获得积分10
3分钟前
liman发布了新的文献求助30
3分钟前
summer完成签到,获得积分10
3分钟前
噜噜完成签到,获得积分10
3分钟前
隐形曼青应助噜噜采纳,获得30
3分钟前
4分钟前
小珂完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
愿景发布了新的文献求助10
5分钟前
平常寄容发布了新的文献求助10
5分钟前
我是老大应助徐志豪采纳,获得10
6分钟前
平常寄容完成签到,获得积分20
6分钟前
Wa1Zh0u完成签到,获得积分20
6分钟前
bkagyin应助愿景采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401