How Can Recommender Systems Benefit from Large Language Models: A Survey

推荐系统 计算机科学 万维网 情报检索 数据科学
作者
Jianghao Lin,Xinyi Dai,Yunjia Xi,Weiwen Liu,Bo Chen,Hao Zhang,Yong Liu,Chuhan Wu,Xiangyang Li,Chenxu Zhu,Huifeng Guo,Yong Yu,Ruiming Tang,Weinan Zhang
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
被引量:25
标识
DOI:10.1145/3678004
摘要

With the rapid development of online services and web applications, recommender systems (RS) have become increasingly indispensable for mitigating information overload and matching users’ information needs by providing personalized suggestions over items. Although the RS research community has made remarkable progress over the past decades, conventional recommendation models (CRM) still have some limitations, e.g. , lacking open-domain world knowledge, and difficulties in comprehending users’ underlying preferences and motivations. Meanwhile, large language models (LLM) have shown impressive general intelligence and human-like capabilities for various natural language processing (NLP) tasks, which mainly stem from their extensive open-world knowledge, logical and commonsense reasoning abilities, as well as their comprehension of human culture and society. Consequently, the emergence of LLM is inspiring the design of recommender systems and pointing out a promising research direction, i.e. , whether we can incorporate LLM and benefit from their common knowledge and capabilities to compensate for the limitations of CRM. In this paper, we conduct a comprehensive survey on this research direction, and draw a bird’s-eye view from the perspective of the whole pipeline in real-world recommender systems. Specifically, we summarize existing research works from two orthogonal aspects: where and how to adapt LLM to RS. For the “ WHERE ” question, we discuss the roles that LLM could play in different stages of the recommendation pipeline, i.e. , feature engineering, feature encoder, scoring/ranking function, user interaction, and pipeline controller. For the “ HOW ” question, we investigate the training and inference strategies, resulting in two fine-grained taxonomy criteria, i.e. , whether to tune LLM or not during training, and whether to involve conventional recommendation models for inference. Detailed analysis and general development paths are provided for both “WHERE” and “HOW” questions, respectively. Then, we highlight the key challenges in adapting LLM to RS from three aspects, i.e. , efficiency, effectiveness, and ethics. Finally, we summarize the survey and discuss the future prospects. To further facilitate the research community of LLM-enhanced recommender systems, we actively maintain a GitHub repository for papers and other related resources in this rising direction 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助爱吃姜的面条采纳,获得10
刚刚
斯文败类应助周周采纳,获得10
1秒前
li完成签到,获得积分10
1秒前
小郭应助飞云采纳,获得10
1秒前
xianwenyang完成签到 ,获得积分10
1秒前
等待的砖家完成签到,获得积分10
1秒前
ruby完成签到,获得积分10
1秒前
汉堡包应助yysghr采纳,获得10
1秒前
大模型应助yu5546采纳,获得10
2秒前
宣智完成签到,获得积分10
2秒前
张津浩完成签到,获得积分10
2秒前
福明明发布了新的文献求助10
3秒前
小二郎应助典雅的静采纳,获得10
3秒前
勤恳思卉发布了新的文献求助10
3秒前
大好人发布了新的文献求助10
3秒前
4秒前
深情冷雪发布了新的文献求助10
5秒前
小确幸发布了新的文献求助10
6秒前
哔哔话完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
怡然文龙发布了新的文献求助10
7秒前
7秒前
7秒前
SuperZzz发布了新的文献求助30
8秒前
我是老大应助时倾采纳,获得10
8秒前
霉菌敏完成签到,获得积分10
8秒前
想喝奶茶发布了新的文献求助10
9秒前
小蘑菇应助yuuuke采纳,获得10
9秒前
杰柒完成签到,获得积分10
9秒前
9秒前
橘子发布了新的文献求助10
10秒前
10秒前
Zilong864完成签到,获得积分10
10秒前
Ava应助马某采纳,获得10
10秒前
11秒前
hkh发布了新的文献求助10
11秒前
12秒前
优美电脑发布了新的文献求助10
13秒前
天天快乐应助小确幸采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344