How Can Recommender Systems Benefit from Large Language Models: A Survey

推荐系统 计算机科学 万维网 情报检索 数据科学
作者
Jianghao Lin,Xinyi Dai,Yunjia Xi,Weiwen Liu,Bo Chen,Hao Zhang,Yong Liu,Chuhan Wu,Xiangyang Li,Chenxu Zhu,Huifeng Guo,Yong Yu,Ruiming Tang,Weinan Zhang
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
被引量:33
标识
DOI:10.1145/3678004
摘要

With the rapid development of online services and web applications, recommender systems (RS) have become increasingly indispensable for mitigating information overload and matching users’ information needs by providing personalized suggestions over items. Although the RS research community has made remarkable progress over the past decades, conventional recommendation models (CRM) still have some limitations, e.g. , lacking open-domain world knowledge, and difficulties in comprehending users’ underlying preferences and motivations. Meanwhile, large language models (LLM) have shown impressive general intelligence and human-like capabilities for various natural language processing (NLP) tasks, which mainly stem from their extensive open-world knowledge, logical and commonsense reasoning abilities, as well as their comprehension of human culture and society. Consequently, the emergence of LLM is inspiring the design of recommender systems and pointing out a promising research direction, i.e. , whether we can incorporate LLM and benefit from their common knowledge and capabilities to compensate for the limitations of CRM. In this paper, we conduct a comprehensive survey on this research direction, and draw a bird’s-eye view from the perspective of the whole pipeline in real-world recommender systems. Specifically, we summarize existing research works from two orthogonal aspects: where and how to adapt LLM to RS. For the “ WHERE ” question, we discuss the roles that LLM could play in different stages of the recommendation pipeline, i.e. , feature engineering, feature encoder, scoring/ranking function, user interaction, and pipeline controller. For the “ HOW ” question, we investigate the training and inference strategies, resulting in two fine-grained taxonomy criteria, i.e. , whether to tune LLM or not during training, and whether to involve conventional recommendation models for inference. Detailed analysis and general development paths are provided for both “WHERE” and “HOW” questions, respectively. Then, we highlight the key challenges in adapting LLM to RS from three aspects, i.e. , efficiency, effectiveness, and ethics. Finally, we summarize the survey and discuss the future prospects. To further facilitate the research community of LLM-enhanced recommender systems, we actively maintain a GitHub repository for papers and other related resources in this rising direction 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助陽15采纳,获得10
刚刚
1秒前
lalala发布了新的文献求助10
1秒前
万能图书馆应助gxch采纳,获得10
1秒前
2秒前
zyf完成签到,获得积分10
3秒前
ael完成签到,获得积分10
3秒前
5秒前
齐朕完成签到,获得积分10
5秒前
6秒前
郑淳瀚发布了新的文献求助10
7秒前
8秒前
xiaoyi发布了新的文献求助10
8秒前
8秒前
zho发布了新的文献求助10
9秒前
9秒前
xxx发布了新的文献求助10
9秒前
11秒前
wao发布了新的文献求助10
11秒前
熬夜写论文完成签到,获得积分20
12秒前
12秒前
陽15发布了新的文献求助10
12秒前
xiongyong完成签到,获得积分10
13秒前
13秒前
光亮语梦完成签到 ,获得积分10
14秒前
14秒前
14秒前
16秒前
搞怪人杰发布了新的文献求助10
16秒前
18秒前
hhh发布了新的文献求助10
19秒前
xiliyusheng发布了新的文献求助10
19秒前
所所应助人咬兔子采纳,获得10
19秒前
英俊的铭应助follow采纳,获得10
19秒前
20秒前
20秒前
科研通AI5应助lykxc采纳,获得10
21秒前
GodZ发布了新的文献求助10
22秒前
洁净听荷完成签到,获得积分10
22秒前
臭小子关注了科研通微信公众号
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624551
求助须知:如何正确求助?哪些是违规求助? 4024016
关于积分的说明 12456116
捐赠科研通 3708552
什么是DOI,文献DOI怎么找? 2045495
邀请新用户注册赠送积分活动 1077550
科研通“疑难数据库(出版商)”最低求助积分说明 960082