🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

Yolov5 polyp detection algorithm based on multi-branch convolution RFB module

计算机科学 卷积(计算机科学) 算法 人工智能 人工神经网络
作者
Jianfeng Guo,Xiyao Dong
标识
DOI:10.1117/12.3033480
摘要

Colorectal cancer remains a formidable global health concern, underscoring the pivotal role of timely detection and intervention in addressing colorectal polyps. This paper unveils the "YOLOv5 Optimized Polyp Detection Algorithm Based on the Multi-Branch RFB Module," offering innovative solutions to overcome existing challenges in manual interpretation and resource disparities. Key Innovations: Our approach introduces a groundbreaking adaptive Gamma transformation in image preprocessing, enhancing contrast and significantly elevating the algorithm's ability to identify colorectal polyps. This transformation contributes to a remarkable improvement in detection accuracy. Furthermore, the integration of the Multi-Branch RFB Convolution Module into the YOLOv5 model is a pioneering addition. This module strategically considers the interplay between receptive field size and eccentricity, resulting in a substantial increase in discriminative power and, consequently, a notable enhancement in detection accuracy. Method Flow Overview: Our algorithm modifies the YOLOv5 framework by incorporating three RBF multi-branch convolutional modules, strategically enhancing feature extraction at deep layers for precise and rapid object detection. Results and Discussion: Comprehensive evaluations on diverse datasets, including CVC-ColonDB and Kvasir-seg, underscore the algorithm's superior performance. Precision, Recall, F1-Score, and mAP@0.5 scores on CVC-ColonDB outperform alternative methods, affirming the effectiveness of our proposed algorithm. Conclusion: This study pioneers advancements in computer-aided colorectal polyp detection, seamlessly integrating adaptive image preprocessing and the multi-branch RFB module. The algorithm demonstrates heightened accuracy, efficiency, and adaptability across datasets, with real-time capabilities and an expanded receptive field contributing to improved diagnostic accuracy. Our findings suggest a promising solution for enhancing early colorectal cancer diagnosis, streamlining clinical workflows, and ushering in a new era of precision in medical imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ltxwygnshz发布了新的文献求助10
刚刚
2秒前
3秒前
XMC2022发布了新的文献求助10
3秒前
4秒前
4秒前
Wy完成签到,获得积分10
5秒前
8秒前
8秒前
爱撒娇的成仁完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
天天快乐应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
慕青应助科研通管家采纳,获得20
10秒前
Ava应助Shirleyjxuan采纳,获得10
10秒前
一只呆呆完成签到 ,获得积分10
11秒前
动漫大师发布了新的文献求助30
12秒前
13秒前
yx_cheng发布了新的文献求助10
15秒前
16秒前
17秒前
银月葱头完成签到 ,获得积分10
18秒前
可爱的函函应助马晓天采纳,获得10
19秒前
YSM应助wualexandra采纳,获得10
19秒前
Akim应助岩下松风采纳,获得10
20秒前
21秒前
nozero应助科研废物采纳,获得50
22秒前
不攻自破发布了新的文献求助10
23秒前
24秒前
Owen应助baokehui采纳,获得10
25秒前
感动忆霜发布了新的文献求助10
26秒前
wanci应助Super Spine采纳,获得10
27秒前
29秒前
不攻自破完成签到,获得积分10
29秒前
顾矜应助1111采纳,获得10
29秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
British Girl Chinese Wife (New World Press, 1985) 800
中国文摘CHINA DIGEST(1946-1950) 1-3(英文) 精装 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3607008
求助须知:如何正确求助?哪些是违规求助? 3175238
关于积分的说明 9583769
捐赠科研通 2881267
什么是DOI,文献DOI怎么找? 1582527
邀请新用户注册赠送积分活动 744142
科研通“疑难数据库(出版商)”最低求助积分说明 726564