What causes cardiac mitochondrial failure at high environmental temperatures?

线粒体 呼吸 细胞生物学 细胞呼吸 ATP合酶 程序性细胞死亡 生物物理学 生物 化学 生物化学 基因 细胞凋亡 解剖
作者
Anthony J. R. Hickey,Alice R. Harford,Pierre Blier,Jules B. L. Devaux
出处
期刊:The Journal of Experimental Biology [The Company of Biologists]
卷期号:227 (20) 被引量:1
标识
DOI:10.1242/jeb.247432
摘要

Although a mechanism accounting for hyperthermic death at critical temperatures remains elusive, the mitochondria of crucial active excitable tissues (i.e. heart and brain) may well be key to this process. Mitochondria produce ∼90% of the ATP required by cells to maintain cellular integrity and function. They also integrate into biosynthetic pathways that support metabolism as a whole, allow communication within the cell, and regulate cellular health and death pathways. We have previously shown that cardiac and brain mitochondria demonstrate decreases in the efficiency of, and absolute capacity for ATP synthesis as temperatures rise, until ultimately there is too little ATP to support cellular demands, and organ failure follows. Importantly, substantial decreases in ATP synthesis occur at temperatures immediately below the temperature of heart failure, and this suggests a causal role of mitochondria in hyperthermic death. However, what causes mitochondria to fail? Here, we consider the answers to this question. Mitochondrial dysfunction at high temperature has classically been attributed to elevated leak respiration suspected to result from increased movement of protons (H+) through the inner mitochondrial membrane (IMM), thereby bypassing the ATP synthases. In this Commentary, we introduce some alternative explanations for elevated leak respiration. We first consider respiratory complex I and then propose that a loss of IMM structure occurs as temperatures rise. The loss of the cristae folds of the IMM may affect the efficiency of H+ transport, increasing H+ conductance either through the IMM or into the bulk water phases of mitochondria. In either case, O2 consumption increases while ATP synthesis decreases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
管箴发布了新的文献求助10
1秒前
善学以致用应助现代晓绿采纳,获得10
1秒前
1秒前
qly完成签到,获得积分20
2秒前
晓晓完成签到 ,获得积分10
3秒前
4秒前
qly发布了新的文献求助30
6秒前
玊尔廿一发布了新的文献求助10
6秒前
科研通AI2S应助云上人采纳,获得10
7秒前
9秒前
李健应助pp采纳,获得10
9秒前
云泽发布了新的文献求助10
10秒前
10秒前
火星上的盼秋完成签到,获得积分10
12秒前
斯文败类应助薄荷味采纳,获得10
13秒前
14秒前
个性浩然完成签到,获得积分10
14秒前
鱼鱼发布了新的文献求助10
16秒前
17秒前
21秒前
21秒前
喜看财经发布了新的文献求助10
22秒前
Amber发布了新的文献求助10
22秒前
tj0000000发布了新的文献求助10
22秒前
25秒前
嘎嘎咻完成签到,获得积分10
25秒前
李爱国应助qly采纳,获得10
25秒前
ri_290发布了新的文献求助10
25秒前
26秒前
26秒前
和谐初南完成签到,获得积分10
26秒前
阿吉完成签到,获得积分10
27秒前
酷波er应助傲娇初阳采纳,获得10
27秒前
科目三应助雪白采纳,获得10
29秒前
TigerOvO完成签到,获得积分10
29秒前
云泽完成签到,获得积分10
30秒前
阿吉发布了新的文献求助10
31秒前
31秒前
领导范儿应助丽丽采纳,获得30
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265086
求助须知:如何正确求助?哪些是违规求助? 2905061
关于积分的说明 8332367
捐赠科研通 2575426
什么是DOI,文献DOI怎么找? 1399788
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633376