材料科学
氧还原反应
Boosting(机器学习)
氧气
接受者
电子受体
光化学
电子供体
电子
还原(数学)
纳米技术
原子物理学
化学物理
催化作用
物理化学
电化学
凝聚态物理
化学
生物化学
物理
几何学
数学
有机化学
电极
量子力学
机器学习
计算机科学
作者
Shenghua Ye,Dantong Zhang,Zhi‐Jun Ou,Lirong Zheng,Wenchao Liu,Wenda Chen,Yuan Xu,Yongliang Li,Xiangzhong Ren,Xiaoping Ouyang,Dongfeng Xue,Xueqing Yan,Qianling Zhang,Jian‐Hong Liu
标识
DOI:10.1002/adfm.202405884
摘要
Abstract Fabricating efficient non‐platinum‐group‐metal catalysts for the oxygen reduction reaction (ORR) in proton‐exchange membrane fuel cells still remains a big challenge. This study creates a unique bamboo‐like architecture of Mn and Fe single atomic sites (SASs) anchored on core‐shell structure of nanopaticles@carbon nanotubes (MnFe SASs/NPs@CNTs) via a precursor route, where the Fe nanoparticles (NPs) (identified as γ‐Fe and Austenite) are confined into CNTs, such an architecture exhibits compelling ORR activity and durability in 0.1 m HClO 4 . Experiments and calculations both reveal that the electron donor–acceptor paradigm between Mn SASs and Fe NPs launches a lattice‐electron coupling mechanism not only increasing occupation of π ‐antibonding orbital in Mn− * O intermediates but also rising Jahn–Teller effect, thereby destabilize the Mn− * O intermediate and eventually facilitate the potential‐limiting step from * O to * OH. Such a coupling activation of the ORR‐inert Mn SASs greatly improves ORR performances of MnFe SASs/NPs@CNTs.
科研通智能强力驱动
Strongly Powered by AbleSci AI