亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MACHINE LEARNING IN THE PREDICTION OF TREATMENT RESPONSE IN RHEUMATOID ARTHRITIS: A SYSTEMATIC REVIEW

医学 类风湿性关节炎 机器学习 梅德林 人工智能 物理疗法 医学物理学 内科学 政治学 法学 计算机科学
作者
Claudia Mendoza‐Pinto,Marcial Sánchez-Tecuatl,Roberto Berra‐Romani,Iván Daniel Maya-Castro,Ivet Etchegaray‐Morales,Pamela Munguía‐Realpozo,Maura Cárdenas-García,Francisco Javier Arellano-Avendaño,Mario García‐Carrasco
出处
期刊:Seminars in Arthritis and Rheumatism [Elsevier]
卷期号:68: 152501-152501
标识
DOI:10.1016/j.semarthrit.2024.152501
摘要

This study aimed to investigate the current status and performance of machine learning (ML) approaches in providing reproducible treatment response predictions. This systematic review was conducted in accordance with the PRISMA statement and the CHARMS checklist. We searched PubMed, Cochrane Library, Web of Science, Scopus, and EBSCO databases for cohort studies that derived and/or validated ML models focused on predicting rheumatoid arthritis (RA) treatment response. We extracted data and critically appraised studies based on the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Risk of Bias Assessment Tool (PROBAST) guidelines. From 210 unduplicated records identified by the literature search, we retained 29 eligible studies. Of these studies, 10 developed a predictive model and reported a mean adherence to the TRIPOD guidelines of 45.6 % (95 % CI: 38.3–52.8 %). The remaining 19 studies not only developed a predictive model but also validated it externally, with a mean adherence of 42.9 % (95 % CI: 39.1–46.6 %). Most of the articles had an unclear risk of bias (41.4 %), followed by a high risk of bias, which was present in 37.9 %. In recent years, ML methods have been increasingly used to predict treatment response in RA. Our critical appraisal revealed unclear and high risk of bias in most of the identified models, suggesting that researchers can do more to address the risk of bias and increase transparency, including the use of calibration measures and reporting methods for handling missing data. None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BetterH完成签到 ,获得积分10
1秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
39秒前
solitude发布了新的文献求助10
46秒前
52秒前
Jasper应助孟筱采纳,获得10
57秒前
57秒前
阳光刺眼完成签到 ,获得积分10
1分钟前
1分钟前
活力的妙之完成签到 ,获得积分10
1分钟前
端庄洪纲完成签到 ,获得积分10
1分钟前
chenzhuod发布了新的文献求助10
1分钟前
1分钟前
李健的小迷弟应助大王采纳,获得10
1分钟前
酷波er应助chenzhuod采纳,获得10
1分钟前
1分钟前
善学以致用应助ellen采纳,获得10
1分钟前
ttsyl发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大王发布了新的文献求助10
2分钟前
ttsyl完成签到,获得积分10
2分钟前
孟筱发布了新的文献求助10
2分钟前
2213sss完成签到,获得积分10
2分钟前
2分钟前
大王完成签到,获得积分10
2分钟前
Lucas应助zxd采纳,获得10
2分钟前
3分钟前
3分钟前
sny完成签到,获得积分20
4分钟前
板栗鸡完成签到 ,获得积分10
4分钟前
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
ellen发布了新的文献求助10
4分钟前
奔跑的小熊完成签到,获得积分10
4分钟前
4分钟前
ellen完成签到,获得积分10
4分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341839
求助须知:如何正确求助?哪些是违规求助? 2969202
关于积分的说明 8637755
捐赠科研通 2648899
什么是DOI,文献DOI怎么找? 1450412
科研通“疑难数据库(出版商)”最低求助积分说明 671913
邀请新用户注册赠送积分活动 660986