作者
Meifen Liu,Jiman Jin,Xiqiang Zhong,Liangle Liu,Chengxuan Tang,Limei Cai
摘要
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.