Novel machine learning algorithm in risk prediction model for pan-cancer risk: application in a large prospective cohort

前瞻性队列研究 机器学习 计算机科学 队列 人工智能 癌症 算法 医学 内科学
作者
Xifeng Wu,Huakang Tu,Qingfeng Hu,Shan P. Tsai,David Ta‐Wei Chu,Chi Pang Wen
标识
DOI:10.1136/bmjonc-2023-000087
摘要

Objective To develop and validate machine-learning models that predict the risk of pan-cancer incidence using demographic, questionnaire and routine health check-up data in a large Asian population. Methods and analysis This study is a prospective cohort study including 433 549 participants from the prospective MJ cohort including a male cohort (n=208 599) and a female cohort (n=224 950). Results During an 8-year median follow-up, 5143 cancers occurred in males and 4764 in females. Compared with Lasso-Cox and Random Survival Forests, XGBoost showed superior performance for both cohorts. The XGBoost model with all 155 features in males and 160 features in females achieved an area under the curve (AUC) of 0.877 and 0.750, respectively. Light models with 31 variables for males and 11 variables for females showed comparable performance: an AUC of 0.876 (95% CI 0.858 to 0.894) in the overall population and 0.818 (95% CI 0.795 to 0.841) in those aged ≥40 years in the male cohort and an AUC of 0.746 (95% CI 0.721 to 0.771) in the overall population and 0.641 (95% CI 0.605 to 0.677) in those aged ≥40 years in the female cohort. High-risk individuals have at least ninefold higher risk of pan-cancer incidence compared with low-risk groups. Conclusion We developed and internally validated the first machine-learning models based on routine health check-up data to predict pan-cancer risk in the general population and achieved generally good discriminatory ability with a small set of predictors. External validation is warranted before the implementation of our risk model in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助皮皮蛙采纳,获得10
刚刚
刚刚
John发布了新的文献求助10
1秒前
安康完成签到,获得积分10
1秒前
1秒前
眼睛大的断缘完成签到,获得积分10
2秒前
王芋圆发布了新的文献求助10
2秒前
bear发布了新的文献求助10
3秒前
LF发布了新的文献求助10
3秒前
善学以致用应助yyyyyy采纳,获得10
3秒前
小姚完成签到,获得积分10
3秒前
日富一日完成签到,获得积分10
3秒前
酷波er应助糖糖糖采纳,获得10
3秒前
4秒前
依依发布了新的文献求助10
4秒前
KKK发布了新的文献求助20
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
傲娇的越泽完成签到,获得积分20
5秒前
wanci应助科研大捞采纳,获得10
5秒前
缓慢不悔应助忧伤的冰彤采纳,获得10
5秒前
欣于所遇完成签到,获得积分10
6秒前
6秒前
ycxxyc发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
852应助微凉采纳,获得10
8秒前
8秒前
8秒前
taotao216发布了新的文献求助10
8秒前
星辰大海应助生活的花采纳,获得10
8秒前
科目三应助科研工作者采纳,获得10
8秒前
9秒前
言言完成签到,获得积分10
9秒前
科研通AI6应助yyy采纳,获得10
10秒前
HOAN应助是帆帆呀采纳,获得30
11秒前
HAOHAO发布了新的文献求助10
11秒前
qqw完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894