Novel machine learning algorithm in risk prediction model for pan-cancer risk: application in a large prospective cohort

前瞻性队列研究 机器学习 计算机科学 队列 人工智能 癌症 算法 医学 内科学
作者
Xifeng Wu,Huakang Tu,Qingfeng Hu,Shan P. Tsai,David Ta‐Wei Chu,Chi Pang Wen
标识
DOI:10.1136/bmjonc-2023-000087
摘要

Objective To develop and validate machine-learning models that predict the risk of pan-cancer incidence using demographic, questionnaire and routine health check-up data in a large Asian population. Methods and analysis This study is a prospective cohort study including 433 549 participants from the prospective MJ cohort including a male cohort (n=208 599) and a female cohort (n=224 950). Results During an 8-year median follow-up, 5143 cancers occurred in males and 4764 in females. Compared with Lasso-Cox and Random Survival Forests, XGBoost showed superior performance for both cohorts. The XGBoost model with all 155 features in males and 160 features in females achieved an area under the curve (AUC) of 0.877 and 0.750, respectively. Light models with 31 variables for males and 11 variables for females showed comparable performance: an AUC of 0.876 (95% CI 0.858 to 0.894) in the overall population and 0.818 (95% CI 0.795 to 0.841) in those aged ≥40 years in the male cohort and an AUC of 0.746 (95% CI 0.721 to 0.771) in the overall population and 0.641 (95% CI 0.605 to 0.677) in those aged ≥40 years in the female cohort. High-risk individuals have at least ninefold higher risk of pan-cancer incidence compared with low-risk groups. Conclusion We developed and internally validated the first machine-learning models based on routine health check-up data to predict pan-cancer risk in the general population and achieved generally good discriminatory ability with a small set of predictors. External validation is warranted before the implementation of our risk model in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助sciiiiii采纳,获得10
刚刚
旧人旧街完成签到,获得积分10
1秒前
缥缈浩然发布了新的文献求助10
1秒前
瘦瘦摇伽完成签到 ,获得积分10
2秒前
忆枫发布了新的文献求助10
2秒前
yinyin完成签到 ,获得积分10
3秒前
小马甲应助欧阳正义采纳,获得10
3秒前
同学好完成签到,获得积分20
4秒前
suthing发布了新的文献求助10
4秒前
4秒前
song发布了新的文献求助10
4秒前
nil发布了新的文献求助10
4秒前
4秒前
小秦完成签到,获得积分10
6秒前
7秒前
001完成签到,获得积分10
7秒前
XIA完成签到 ,获得积分10
8秒前
8秒前
tt完成签到,获得积分10
8秒前
11秒前
百地希留耶完成签到 ,获得积分10
11秒前
坦率的夜玉完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
大个应助迷糊的七七采纳,获得30
14秒前
14秒前
14秒前
14秒前
14秒前
墚玊发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得30
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429