Novel machine learning algorithm in risk prediction model for pan-cancer risk: application in a large prospective cohort

前瞻性队列研究 机器学习 计算机科学 队列 人工智能 癌症 算法 医学 内科学
作者
Xifeng Wu,Huakang Tu,Qingfeng Hu,Shan P. Tsai,David Ta‐Wei Chu,Chi Pang Wen
标识
DOI:10.1136/bmjonc-2023-000087
摘要

Objective To develop and validate machine-learning models that predict the risk of pan-cancer incidence using demographic, questionnaire and routine health check-up data in a large Asian population. Methods and analysis This study is a prospective cohort study including 433 549 participants from the prospective MJ cohort including a male cohort (n=208 599) and a female cohort (n=224 950). Results During an 8-year median follow-up, 5143 cancers occurred in males and 4764 in females. Compared with Lasso-Cox and Random Survival Forests, XGBoost showed superior performance for both cohorts. The XGBoost model with all 155 features in males and 160 features in females achieved an area under the curve (AUC) of 0.877 and 0.750, respectively. Light models with 31 variables for males and 11 variables for females showed comparable performance: an AUC of 0.876 (95% CI 0.858 to 0.894) in the overall population and 0.818 (95% CI 0.795 to 0.841) in those aged ≥40 years in the male cohort and an AUC of 0.746 (95% CI 0.721 to 0.771) in the overall population and 0.641 (95% CI 0.605 to 0.677) in those aged ≥40 years in the female cohort. High-risk individuals have at least ninefold higher risk of pan-cancer incidence compared with low-risk groups. Conclusion We developed and internally validated the first machine-learning models based on routine health check-up data to predict pan-cancer risk in the general population and achieved generally good discriminatory ability with a small set of predictors. External validation is warranted before the implementation of our risk model in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助文俊伟采纳,获得30
刚刚
2秒前
fatcat完成签到,获得积分10
2秒前
pluto应助move采纳,获得10
4秒前
4秒前
xcx发布了新的文献求助10
4秒前
5秒前
5秒前
实验室应助Sunbrust采纳,获得30
6秒前
one完成签到 ,获得积分10
7秒前
q183发布了新的文献求助10
7秒前
送外卖了完成签到,获得积分10
7秒前
翁醉山完成签到,获得积分10
7秒前
8秒前
彭于晏应助南瓜饼子铺采纳,获得10
9秒前
10秒前
隐形的宝宝完成签到,获得积分10
10秒前
圣斗士发布了新的文献求助10
10秒前
10秒前
镜燃完成签到 ,获得积分10
11秒前
科研通AI6应助Tomasong采纳,获得10
11秒前
正直芫发布了新的文献求助10
11秒前
毛豆爸爸应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
毛豆爸爸应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
浅海111完成签到,获得积分10
13秒前
13秒前
鳄鱼完成签到,获得积分20
13秒前
Lucas应助顺利毕业采纳,获得10
15秒前
15秒前
小魏发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653053
求助须知:如何正确求助?哪些是违规求助? 4789236
关于积分的说明 15062819
捐赠科研通 4811737
什么是DOI,文献DOI怎么找? 2574034
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488422