Cross-attention-based saliency inference for predicting cancer metastasis on whole slide images

推论 计算机科学 人工智能 癌症 转移 模式识别(心理学) 医学 内科学
作者
Ziyu Su,Mostafa Rezapour,Usama Sajjad,Shuo Niu,Metin N. Gürcan,Muhammad Khalid Khan Niazi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3439499
摘要

Although multiple instance learning (MIL) methods are widely used for automatic tumor detection on whole slide images (WSI), they suffer from the extreme class imbalance WSIs containing small tumors where the tumor may include only a few isolated cells. For early detection, it is important that MIL algorithms can identify small tumors. Existing studies have attempted to address this issue using attention-based architectures and instance selection-based methodologies but have not produced significant improvements. This paper proposes crossattention-based salient instance inference MIL (CASiiMIL), which involves a novel saliency-informed attention mechanism to identify small tumors (e.g., breast cancer lymph node micro-metastasis) on WSIs without needing any annotations. In addition to this new attention mechanism, we introduce a negative representation learning algorithm to facilitate the learning of saliencyinformed attention weights for improved sensitivity on tumor WSIs. The proposed model outperforms the state-ofthe-art MIL methods on two popular tumor metastasis detection datasets. The proposed approach demonstrates great cross-center generalizability, high accuracy in classifying WSIs with small tumor lesions, and excellent interpretability attributed to the saliency-informed attention weights. We expect that the proposed method will pave the way for training algorithms for early tumor detection on large datasets where acquiring fine-grained annotations is is not practical
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aprilapple发布了新的文献求助10
刚刚
1秒前
文献菜鸟完成签到 ,获得积分10
1秒前
2秒前
jeeya完成签到,获得积分10
2秒前
LC完成签到,获得积分10
3秒前
4秒前
4秒前
ding应助喜悦斑马采纳,获得10
4秒前
周四一发布了新的文献求助10
5秒前
5秒前
犹豫大侠完成签到,获得积分10
5秒前
mdmdd发布了新的文献求助10
5秒前
布丁完成签到,获得积分10
5秒前
香蕉觅云应助Mr_I采纳,获得10
6秒前
奋斗映寒发布了新的文献求助10
6秒前
田田田完成签到,获得积分10
6秒前
Orange应助好好学习采纳,获得10
6秒前
药小博发布了新的文献求助10
7秒前
txy完成签到,获得积分10
7秒前
8秒前
念念发布了新的文献求助10
8秒前
迷你的面包完成签到,获得积分10
8秒前
9秒前
9秒前
炙热雅琴发布了新的文献求助10
9秒前
10秒前
10秒前
Aprilapple发布了新的文献求助10
11秒前
11秒前
hanhan完成签到,获得积分10
11秒前
txy发布了新的文献求助10
11秒前
12秒前
赘婿应助Zz采纳,获得10
12秒前
12秒前
瑶瑶完成签到,获得积分20
13秒前
Pann完成签到 ,获得积分10
13秒前
甜甜凌雪发布了新的文献求助10
14秒前
斯文谷秋发布了新的文献求助30
14秒前
Elaine_fy发布了新的文献求助10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232528
求助须知:如何正确求助?哪些是违规求助? 2879395
关于积分的说明 8210970
捐赠科研通 2546736
什么是DOI,文献DOI怎么找? 1376330
科研通“疑难数据库(出版商)”最低求助积分说明 647594
邀请新用户注册赠送积分活动 622889