Cross-attention-based saliency inference for predicting cancer metastasis on whole slide images

推论 计算机科学 人工智能 癌症 转移 模式识别(心理学) 医学 内科学
作者
Ziyu Su,Mostafa Rezapour,Usama Sajjad,Shuo Niu,Metin N. Gürcan,Muhammad Khalid Khan Niazi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3439499
摘要

Although multiple instance learning (MIL) methods are widely used for automatic tumor detection on whole slide images (WSI), they suffer from the extreme class imbalance WSIs containing small tumors where the tumor may include only a few isolated cells. For early detection, it is important that MIL algorithms can identify small tumors. Existing studies have attempted to address this issue using attention-based architectures and instance selection-based methodologies but have not produced significant improvements. This paper proposes crossattention-based salient instance inference MIL (CASiiMIL), which involves a novel saliency-informed attention mechanism to identify small tumors (e.g., breast cancer lymph node micro-metastasis) on WSIs without needing any annotations. In addition to this new attention mechanism, we introduce a negative representation learning algorithm to facilitate the learning of saliencyinformed attention weights for improved sensitivity on tumor WSIs. The proposed model outperforms the state-ofthe-art MIL methods on two popular tumor metastasis detection datasets. The proposed approach demonstrates great cross-center generalizability, high accuracy in classifying WSIs with small tumor lesions, and excellent interpretability attributed to the saliency-informed attention weights. We expect that the proposed method will pave the way for training algorithms for early tumor detection on large datasets where acquiring fine-grained annotations is is not practical

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Again发布了新的文献求助10
1秒前
1秒前
nn应助自信寻真采纳,获得10
1秒前
li完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
6秒前
7秒前
7秒前
852应助含糊的路人采纳,获得10
7秒前
共享精神应助adden采纳,获得10
8秒前
小马甲应助yyy采纳,获得30
8秒前
中书完成签到,获得积分10
8秒前
haishixigua完成签到,获得积分10
8秒前
段段发布了新的文献求助10
9秒前
9秒前
AD应助micro然采纳,获得10
9秒前
酷波er应助整齐的夏柳采纳,获得10
10秒前
Evander发布了新的文献求助10
10秒前
10秒前
ivan关注了科研通微信公众号
10秒前
子木给子木的求助进行了留言
10秒前
11秒前
huangtaopie发布了新的文献求助10
11秒前
哈哈哈哈哈哈哈哈哈关注了科研通微信公众号
11秒前
12秒前
12秒前
12秒前
库洛洛完成签到,获得积分10
13秒前
打打应助小小采纳,获得10
13秒前
漾漾发布了新的文献求助10
13秒前
14秒前
顾矜应助不知采纳,获得10
15秒前
15秒前
15秒前
ST发布了新的文献求助10
15秒前
15秒前
15秒前
鑫博完成签到 ,获得积分10
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588167
求助须知:如何正确求助?哪些是违规求助? 4671269
关于积分的说明 14786547
捐赠科研通 4624667
什么是DOI,文献DOI怎么找? 2531667
邀请新用户注册赠送积分活动 1500268
关于科研通互助平台的介绍 1468240