Cross-attention-based saliency inference for predicting cancer metastasis on whole slide images

推论 计算机科学 人工智能 癌症 转移 模式识别(心理学) 医学 内科学
作者
Ziyu Su,Mostafa Rezapour,Usama Sajjad,Shuo Niu,Metin N. Gürcan,Muhammad Khalid Khan Niazi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3439499
摘要

Although multiple instance learning (MIL) methods are widely used for automatic tumor detection on whole slide images (WSI), they suffer from the extreme class imbalance WSIs containing small tumors where the tumor may include only a few isolated cells. For early detection, it is important that MIL algorithms can identify small tumors. Existing studies have attempted to address this issue using attention-based architectures and instance selection-based methodologies but have not produced significant improvements. This paper proposes crossattention-based salient instance inference MIL (CASiiMIL), which involves a novel saliency-informed attention mechanism to identify small tumors (e.g., breast cancer lymph node micro-metastasis) on WSIs without needing any annotations. In addition to this new attention mechanism, we introduce a negative representation learning algorithm to facilitate the learning of saliencyinformed attention weights for improved sensitivity on tumor WSIs. The proposed model outperforms the state-ofthe-art MIL methods on two popular tumor metastasis detection datasets. The proposed approach demonstrates great cross-center generalizability, high accuracy in classifying WSIs with small tumor lesions, and excellent interpretability attributed to the saliency-informed attention weights. We expect that the proposed method will pave the way for training algorithms for early tumor detection on large datasets where acquiring fine-grained annotations is is not practical
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Gun发布了新的文献求助10
刚刚
2秒前
2秒前
浮游应助热情不正采纳,获得10
2秒前
3秒前
小宝发布了新的文献求助10
3秒前
4秒前
Fall完成签到,获得积分10
5秒前
Camellia完成签到,获得积分10
6秒前
ZHH发布了新的文献求助10
6秒前
热情迎彤发布了新的文献求助10
6秒前
Hello应助凤凰院凶真采纳,获得10
7秒前
Wendy完成签到,获得积分10
7秒前
dops发布了新的文献求助10
7秒前
9秒前
univ完成签到,获得积分10
9秒前
BillowHu发布了新的文献求助10
9秒前
10秒前
10秒前
情怀应助高大的高山采纳,获得10
11秒前
12秒前
飞快的从彤完成签到 ,获得积分20
12秒前
13秒前
0713发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
15秒前
Alice0210发布了新的文献求助10
16秒前
英姑应助胡涵暄采纳,获得10
16秒前
善学以致用应助无非采纳,获得10
17秒前
孤独的太清完成签到 ,获得积分10
17秒前
涵泽发布了新的文献求助10
18秒前
18秒前
Suyx发布了新的文献求助10
18秒前
19秒前
ding应助Antares采纳,获得10
19秒前
田様应助烂漫凝竹采纳,获得10
19秒前
科研通AI6应助cjch2025采纳,获得10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342918
求助须知:如何正确求助?哪些是违规求助? 4478608
关于积分的说明 13940254
捐赠科研通 4375531
什么是DOI,文献DOI怎么找? 2404114
邀请新用户注册赠送积分活动 1396625
关于科研通互助平台的介绍 1368965