Cross-attention-based saliency inference for predicting cancer metastasis on whole slide images

推论 计算机科学 人工智能 癌症 转移 模式识别(心理学) 医学 内科学
作者
Ziyu Su,Mostafa Rezapour,Usama Sajjad,Shuo Niu,Metin N. Gürcan,Muhammad Khalid Khan Niazi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3439499
摘要

Although multiple instance learning (MIL) methods are widely used for automatic tumor detection on whole slide images (WSI), they suffer from the extreme class imbalance WSIs containing small tumors where the tumor may include only a few isolated cells. For early detection, it is important that MIL algorithms can identify small tumors. Existing studies have attempted to address this issue using attention-based architectures and instance selection-based methodologies but have not produced significant improvements. This paper proposes crossattention-based salient instance inference MIL (CASiiMIL), which involves a novel saliency-informed attention mechanism to identify small tumors (e.g., breast cancer lymph node micro-metastasis) on WSIs without needing any annotations. In addition to this new attention mechanism, we introduce a negative representation learning algorithm to facilitate the learning of saliencyinformed attention weights for improved sensitivity on tumor WSIs. The proposed model outperforms the state-ofthe-art MIL methods on two popular tumor metastasis detection datasets. The proposed approach demonstrates great cross-center generalizability, high accuracy in classifying WSIs with small tumor lesions, and excellent interpretability attributed to the saliency-informed attention weights. We expect that the proposed method will pave the way for training algorithms for early tumor detection on large datasets where acquiring fine-grained annotations is is not practical

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花生米完成签到 ,获得积分10
刚刚
Lucas应助Haj1mi采纳,获得10
刚刚
刚刚
深情安青应助我是five采纳,获得80
刚刚
渔婆发布了新的文献求助10
1秒前
呆萌冷风发布了新的文献求助10
1秒前
2秒前
ki发布了新的文献求助10
2秒前
天天快乐应助stuuuuuuuuuuudy采纳,获得10
3秒前
3秒前
王洪完成签到,获得积分10
3秒前
3秒前
4秒前
robert完成签到,获得积分10
4秒前
4秒前
4秒前
splaker7完成签到,获得积分10
5秒前
星辰大海应助小兑采纳,获得10
6秒前
6秒前
萧然发布了新的文献求助10
7秒前
7秒前
Ycx发布了新的文献求助10
7秒前
8秒前
所爱皆在发布了新的文献求助10
8秒前
空中马铃薯完成签到,获得积分10
8秒前
Twonej举报量子星尘求助涉嫌违规
8秒前
充电宝应助Throb采纳,获得10
9秒前
哈哈哈发布了新的文献求助10
9秒前
JunpengGuo发布了新的文献求助10
10秒前
悦耳白山发布了新的文献求助10
10秒前
FashionBoy应助大胆金针菇采纳,获得10
10秒前
ki完成签到,获得积分20
11秒前
Twonej应助科研通管家采纳,获得30
11秒前
浮游应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
11秒前
lemon发布了新的文献求助10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655855
求助须知:如何正确求助?哪些是违规求助? 4800784
关于积分的说明 15074114
捐赠科研通 4814288
什么是DOI,文献DOI怎么找? 2575593
邀请新用户注册赠送积分活动 1530977
关于科研通互助平台的介绍 1489613