Cross-attention-based saliency inference for predicting cancer metastasis on whole slide images

推论 计算机科学 人工智能 癌症 转移 模式识别(心理学) 医学 内科学
作者
Ziyu Su,Mostafa Rezapour,Usama Sajjad,Shuo Niu,Metin N. Gürcan,Muhammad Khalid Khan Niazi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3439499
摘要

Although multiple instance learning (MIL) methods are widely used for automatic tumor detection on whole slide images (WSI), they suffer from the extreme class imbalance WSIs containing small tumors where the tumor may include only a few isolated cells. For early detection, it is important that MIL algorithms can identify small tumors. Existing studies have attempted to address this issue using attention-based architectures and instance selection-based methodologies but have not produced significant improvements. This paper proposes crossattention-based salient instance inference MIL (CASiiMIL), which involves a novel saliency-informed attention mechanism to identify small tumors (e.g., breast cancer lymph node micro-metastasis) on WSIs without needing any annotations. In addition to this new attention mechanism, we introduce a negative representation learning algorithm to facilitate the learning of saliencyinformed attention weights for improved sensitivity on tumor WSIs. The proposed model outperforms the state-ofthe-art MIL methods on two popular tumor metastasis detection datasets. The proposed approach demonstrates great cross-center generalizability, high accuracy in classifying WSIs with small tumor lesions, and excellent interpretability attributed to the saliency-informed attention weights. We expect that the proposed method will pave the way for training algorithms for early tumor detection on large datasets where acquiring fine-grained annotations is is not practical
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马哥发布了新的文献求助10
刚刚
ruanyh发布了新的文献求助20
1秒前
1秒前
3秒前
杨桃发布了新的文献求助10
4秒前
8秒前
科研通AI5应助博修采纳,获得10
8秒前
1s完成签到,获得积分20
9秒前
茯苓发布了新的文献求助10
10秒前
爆米花应助如意2023采纳,获得10
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
柯一一应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得30
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
bbb应助科研通管家采纳,获得20
12秒前
12秒前
12秒前
鹿阿布发布了新的文献求助10
12秒前
香蕉觅云应助科研通管家采纳,获得30
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
佳佳应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
linmo发布了新的文献求助10
15秒前
louise完成签到,获得积分10
16秒前
17秒前
yxy303256651完成签到,获得积分10
18秒前
VitoLi发布了新的文献求助10
18秒前
善学以致用应助多巴不胺采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578