Cross-attention-based saliency inference for predicting cancer metastasis on whole slide images

推论 计算机科学 人工智能 癌症 转移 模式识别(心理学) 医学 内科学
作者
Ziyu Su,Mostafa Rezapour,Usama Sajjad,Shuo Niu,Metin N. Gürcan,Muhammad Khalid Khan Niazi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3439499
摘要

Although multiple instance learning (MIL) methods are widely used for automatic tumor detection on whole slide images (WSI), they suffer from the extreme class imbalance WSIs containing small tumors where the tumor may include only a few isolated cells. For early detection, it is important that MIL algorithms can identify small tumors. Existing studies have attempted to address this issue using attention-based architectures and instance selection-based methodologies but have not produced significant improvements. This paper proposes crossattention-based salient instance inference MIL (CASiiMIL), which involves a novel saliency-informed attention mechanism to identify small tumors (e.g., breast cancer lymph node micro-metastasis) on WSIs without needing any annotations. In addition to this new attention mechanism, we introduce a negative representation learning algorithm to facilitate the learning of saliencyinformed attention weights for improved sensitivity on tumor WSIs. The proposed model outperforms the state-ofthe-art MIL methods on two popular tumor metastasis detection datasets. The proposed approach demonstrates great cross-center generalizability, high accuracy in classifying WSIs with small tumor lesions, and excellent interpretability attributed to the saliency-informed attention weights. We expect that the proposed method will pave the way for training algorithms for early tumor detection on large datasets where acquiring fine-grained annotations is is not practical

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Greyson完成签到,获得积分10
刚刚
华仔应助满天星采纳,获得10
刚刚
丘比特应助帅气的秘密采纳,获得10
刚刚
上官若男应助张潇潇采纳,获得10
1秒前
大个应助邹wl采纳,获得10
1秒前
xhmmm发布了新的文献求助10
1秒前
fjmelite发布了新的文献求助10
1秒前
2秒前
Orange应助Cx330采纳,获得10
2秒前
领导范儿应助李桢采纳,获得10
3秒前
www发布了新的文献求助10
3秒前
3秒前
搬砖人完成签到,获得积分10
3秒前
Mao完成签到,获得积分20
3秒前
4秒前
niuniu顺利毕业完成签到 ,获得积分10
4秒前
4秒前
feng应助liying采纳,获得30
6秒前
wang完成签到 ,获得积分10
6秒前
倦鸟余花完成签到,获得积分10
6秒前
kyJYbs完成签到,获得积分10
6秒前
6秒前
机灵寒烟完成签到,获得积分10
8秒前
wwy应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
8秒前
楠枫应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得30
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
残剑月应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
残剑月应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
希望天下0贩的0应助meng采纳,获得10
8秒前
无花果应助科研通管家采纳,获得30
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609460
求助须知:如何正确求助?哪些是违规求助? 4694074
关于积分的说明 14880935
捐赠科研通 4719643
什么是DOI,文献DOI怎么找? 2544750
邀请新用户注册赠送积分活动 1509658
关于科研通互助平台的介绍 1472950