Cross-attention-based saliency inference for predicting cancer metastasis on whole slide images

推论 计算机科学 人工智能 癌症 转移 模式识别(心理学) 医学 内科学
作者
Ziyu Su,Mostafa Rezapour,Usama Sajjad,Shuo Niu,Metin N. Gürcan,Muhammad Khalid Khan Niazi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3439499
摘要

Although multiple instance learning (MIL) methods are widely used for automatic tumor detection on whole slide images (WSI), they suffer from the extreme class imbalance WSIs containing small tumors where the tumor may include only a few isolated cells. For early detection, it is important that MIL algorithms can identify small tumors. Existing studies have attempted to address this issue using attention-based architectures and instance selection-based methodologies but have not produced significant improvements. This paper proposes crossattention-based salient instance inference MIL (CASiiMIL), which involves a novel saliency-informed attention mechanism to identify small tumors (e.g., breast cancer lymph node micro-metastasis) on WSIs without needing any annotations. In addition to this new attention mechanism, we introduce a negative representation learning algorithm to facilitate the learning of saliencyinformed attention weights for improved sensitivity on tumor WSIs. The proposed model outperforms the state-ofthe-art MIL methods on two popular tumor metastasis detection datasets. The proposed approach demonstrates great cross-center generalizability, high accuracy in classifying WSIs with small tumor lesions, and excellent interpretability attributed to the saliency-informed attention weights. We expect that the proposed method will pave the way for training algorithms for early tumor detection on large datasets where acquiring fine-grained annotations is is not practical

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小粥发布了新的文献求助10
1秒前
zhendezy发布了新的文献求助30
1秒前
wanci应助袁震的爹爹采纳,获得10
2秒前
孤独的ming发布了新的文献求助10
2秒前
露桥闻笛发布了新的文献求助10
3秒前
王雅发布了新的文献求助10
3秒前
3秒前
4秒前
小花发布了新的文献求助30
4秒前
lucky发布了新的文献求助10
4秒前
科研通AI6应助神离采纳,获得30
4秒前
nihao2023发布了新的文献求助10
4秒前
领导范儿应助文静灵阳采纳,获得10
5秒前
Cu完成签到,获得积分10
5秒前
研友_VZG7GZ应助MayoCQ采纳,获得10
5秒前
5秒前
6秒前
棋局完成签到,获得积分20
6秒前
炙热果汁发布了新的文献求助10
6秒前
故意的亦云完成签到,获得积分10
6秒前
埋头赶路应助layla采纳,获得10
7秒前
丰丰扫心完成签到,获得积分10
7秒前
顾矜应助sjdove采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
爆米花应助dazryt采纳,获得10
10秒前
JXY发布了新的文献求助10
10秒前
10秒前
跳跃雁开发布了新的文献求助30
10秒前
杨三多完成签到,获得积分10
12秒前
13秒前
33应助科研小白采纳,获得10
13秒前
杨拿铁完成签到,获得积分10
14秒前
现代宛丝完成签到,获得积分20
14秒前
JamesPei应助小粥采纳,获得10
15秒前
自然完成签到 ,获得积分10
15秒前
灵巧剑心发布了新的文献求助10
15秒前
123完成签到,获得积分10
15秒前
HJJHJH发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913