Cross-attention-based saliency inference for predicting cancer metastasis on whole slide images

推论 计算机科学 人工智能 癌症 转移 模式识别(心理学) 医学 内科学
作者
Ziyu Su,Mostafa Rezapour,Usama Sajjad,Shuo Niu,Metin N. Gürcan,Muhammad Khalid Khan Niazi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3439499
摘要

Although multiple instance learning (MIL) methods are widely used for automatic tumor detection on whole slide images (WSI), they suffer from the extreme class imbalance WSIs containing small tumors where the tumor may include only a few isolated cells. For early detection, it is important that MIL algorithms can identify small tumors. Existing studies have attempted to address this issue using attention-based architectures and instance selection-based methodologies but have not produced significant improvements. This paper proposes crossattention-based salient instance inference MIL (CASiiMIL), which involves a novel saliency-informed attention mechanism to identify small tumors (e.g., breast cancer lymph node micro-metastasis) on WSIs without needing any annotations. In addition to this new attention mechanism, we introduce a negative representation learning algorithm to facilitate the learning of saliencyinformed attention weights for improved sensitivity on tumor WSIs. The proposed model outperforms the state-ofthe-art MIL methods on two popular tumor metastasis detection datasets. The proposed approach demonstrates great cross-center generalizability, high accuracy in classifying WSIs with small tumor lesions, and excellent interpretability attributed to the saliency-informed attention weights. We expect that the proposed method will pave the way for training algorithms for early tumor detection on large datasets where acquiring fine-grained annotations is is not practical

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助haha采纳,获得10
刚刚
XSY发布了新的文献求助10
刚刚
1秒前
wnw发布了新的文献求助30
1秒前
搜集达人应助lsj采纳,获得10
2秒前
2秒前
高大的阑香完成签到,获得积分10
2秒前
邱燈发布了新的文献求助20
2秒前
沁秋完成签到,获得积分10
3秒前
yyyy发布了新的文献求助10
3秒前
3秒前
笑点低机器猫完成签到,获得积分10
3秒前
是龙龙呀完成签到,获得积分10
4秒前
科研通AI6应助Divine采纳,获得10
4秒前
思源应助mj采纳,获得10
4秒前
4秒前
jjjjchou发布了新的文献求助10
4秒前
犹豫的行恶应助百事可乐采纳,获得10
5秒前
6秒前
7秒前
7秒前
蜂窝杯子完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
情怀应助fzj采纳,获得10
8秒前
8秒前
8秒前
不停发布了新的文献求助10
8秒前
深情安青应助刘佳恬采纳,获得10
8秒前
Cui发布了新的文献求助10
9秒前
Icy完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
桀桀桀完成签到,获得积分10
10秒前
liming完成签到,获得积分20
10秒前
开朗若之发布了新的文献求助30
10秒前
yyyy完成签到,获得积分10
11秒前
科研通AI6应助下次一定采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667488
求助须知:如何正确求助?哪些是违规求助? 4886195
关于积分的说明 15120469
捐赠科研通 4826311
什么是DOI,文献DOI怎么找? 2583920
邀请新用户注册赠送积分活动 1537973
关于科研通互助平台的介绍 1496095