Rema-Net: An efficient multi-attention convolutional neural network for rapid skin lesion segmentation

分割 联营 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 采样(信号处理) 皮肤损伤 图层(电子) 人工神经网络 深度学习 计算机视觉 医学 滤波器(信号处理) 病理 化学 有机化学
作者
Litao Yang,Chao Fan,Hao Lin,Yingying Qiu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:159: 106952-106952 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.106952
摘要

For clinical treatment, the accurate segmentation of lesions from dermoscopic images is extremely valuable. Convolutional neural networks (such as U-Net and its numerous variants) have become the main methods for skin lesion segmentation in recent years. However, because these methods frequently have a large number of parameters and complicated algorithm structures, which results in high hardware requirements and long training time, it is difficult to effectively use them for fast training and segmentation tasks. For this reason, we proposed an efficient multi-attention convolutional neural network (Rema-Net) for rapid skin lesion segmentation. The down-sampling module of the network only uses a convolutional layer and a pooling layer, with spatial attention added to improve useful features. We also designed skip-connections between the down-sampling and up-sampling parts of the network, and used reverse attention operation on the skip-connections to strengthen segmentation performance of the network. We conducted extensive experiments on five publicly available datasets to validate the effectiveness of our method, including the ISIC-2016, ISIC-2017, ISIC-2018, PH2, and HAM10000 datasets. The results show that the proposed method reduced the number of parameters by nearly 40% when compared with U-Net. Furthermore, the segmentation metrics are significantly better than some previous methods, and the predictions are closer to the real lesion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WYH发布了新的文献求助10
1秒前
柔之完成签到,获得积分10
1秒前
fffff发布了新的文献求助20
2秒前
xiaojian_291完成签到,获得积分10
2秒前
2秒前
3秒前
小马甲应助theinu采纳,获得10
3秒前
3秒前
海蓝之心发布了新的文献求助10
4秒前
4秒前
今后应助淡然棒球采纳,获得10
5秒前
小蟹发布了新的文献求助10
6秒前
7秒前
爆米花应助123321采纳,获得10
7秒前
undertaker发布了新的文献求助10
7秒前
wanci应助俊逸若之采纳,获得10
8秒前
ydy发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
赘婿应助清秀的小刺猬采纳,获得10
9秒前
10秒前
哈哈姐完成签到,获得积分10
10秒前
星辰大海应助WYH采纳,获得10
11秒前
传奇3应助以筱采纳,获得10
11秒前
13秒前
14秒前
14秒前
15秒前
theinu发布了新的文献求助10
15秒前
高大绝义发布了新的文献求助10
15秒前
Orange应助难过的谷芹采纳,获得10
16秒前
16秒前
17秒前
17秒前
Ujjel75完成签到,获得积分10
18秒前
YUUNY发布了新的文献求助10
19秒前
aoi发布了新的文献求助10
21秒前
Aiden完成签到 ,获得积分10
21秒前
Orange应助大菠萝采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786859
求助须知:如何正确求助?哪些是违规求助? 5696278
关于积分的说明 15470826
捐赠科研通 4915556
什么是DOI,文献DOI怎么找? 2645833
邀请新用户注册赠送积分活动 1593523
关于科研通互助平台的介绍 1547863