已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Branch and Progressive Network for Low-Light Image Enhancement

计算机科学 人工智能 像素 计算机视觉 水准点(测量) 卷积神经网络 亮度 过程(计算) 模式识别(心理学) 光学 大地测量学 操作系统 物理 地理
作者
Kaibing Zhang,Cheng Yuan,Jie Li,Xinbo Gao,Minqi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2295-2308 被引量:29
标识
DOI:10.1109/tip.2023.3266171
摘要

Low-light images incur several complicated degradation factors such as poor brightness, low contrast, color degradation, and noise. Most previous deep learning-based approaches, however, only learn the mapping relationship of single channel between the input low-light images and the expected normal-light images, which is insufficient enough to deal with low-light images captured under uncertain imaging environment. Moreover, too deeper network architecture is not conducive to recover low-light images due to extremely low values in pixels. To surmount aforementioned issues, in this paper we propose a novel multi-branch and progressive network (MBPNet) for low-light image enhancement. To be more specific, the proposed MBPNet is comprised of four different branches which build the mapping relationship at different scales. The followed fusion is performed on the outputs obtained from four different branches for the final enhanced image. Furthermore, to better handle the difficulty of delivering structural information of low-light images with low values in pixels, a progressive enhancement strategy is applied in the proposed method, where four convolutional long short-term memory networks (LSTM) are embedded in four branches and an recurrent network architecture is developed to iteratively perform the enhancement process. In addition, a joint loss function consisting of the pixel loss, the multi-scale perceptual loss, the adversarial loss, the gradient loss, and the color loss is framed to optimize the model parameters. To evaluate the effectiveness of proposed MBPNet, three popularly used benchmark databases are used for both quantitative and qualitative assessments. The experimental results confirm that the proposed MBPNet obviously outperforms other state-of-the-art approaches in terms of quantitative and qualitative results. The code will be available at https://github.com/kbzhang0505/MBPNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
coollz发布了新的文献求助10
3秒前
5秒前
香蕉觅云应助Megan采纳,获得10
7秒前
7秒前
chigga发布了新的文献求助10
11秒前
14秒前
敏感的飞松完成签到 ,获得积分10
16秒前
18秒前
吃了一口还想吃完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
Orange应助chigga采纳,获得10
19秒前
xxi完成签到,获得积分20
20秒前
英俊的铭应助高挑的梦芝采纳,获得10
23秒前
xxi发布了新的文献求助10
24秒前
xun应助啦啦啦啦采纳,获得10
24秒前
27秒前
科研通AI6应助xxi采纳,获得10
31秒前
努力的蜗牛完成签到,获得积分10
35秒前
37秒前
40秒前
无情落雁发布了新的文献求助10
41秒前
太平完成签到,获得积分10
51秒前
大个应助薄荷味汽水采纳,获得10
54秒前
57秒前
英俊的铭应助LukeLion采纳,获得10
58秒前
sjj发布了新的文献求助10
1分钟前
Cherie77完成签到 ,获得积分10
1分钟前
zl13332完成签到 ,获得积分10
1分钟前
余的日记本完成签到,获得积分10
1分钟前
桐桐应助sjj采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
诚心的初阳完成签到,获得积分10
1分钟前
decade发布了新的文献求助10
1分钟前
随风完成签到,获得积分0
1分钟前
sjj完成签到,获得积分10
1分钟前
1分钟前
行悟完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610489
求助须知:如何正确求助?哪些是违规求助? 4016443
关于积分的说明 12435173
捐赠科研通 3698029
什么是DOI,文献DOI怎么找? 2039187
邀请新用户注册赠送积分活动 1072053
科研通“疑难数据库(出版商)”最低求助积分说明 955729