亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Branch and Progressive Network for Low-Light Image Enhancement

计算机科学 人工智能 像素 计算机视觉 水准点(测量) 卷积神经网络 亮度 过程(计算) 模式识别(心理学) 光学 物理 大地测量学 地理 操作系统
作者
Kaibing Zhang,Cheng Yuan,Jie Li,Xinbo Gao,Minqi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2295-2308 被引量:18
标识
DOI:10.1109/tip.2023.3266171
摘要

Low-light images incur several complicated degradation factors such as poor brightness, low contrast, color degradation, and noise. Most previous deep learning-based approaches, however, only learn the mapping relationship of single channel between the input low-light images and the expected normal-light images, which is insufficient enough to deal with low-light images captured under uncertain imaging environment. Moreover, too deeper network architecture is not conducive to recover low-light images due to extremely low values in pixels. To surmount aforementioned issues, in this paper we propose a novel multi-branch and progressive network (MBPNet) for low-light image enhancement. To be more specific, the proposed MBPNet is comprised of four different branches which build the mapping relationship at different scales. The followed fusion is performed on the outputs obtained from four different branches for the final enhanced image. Furthermore, to better handle the difficulty of delivering structural information of low-light images with low values in pixels, a progressive enhancement strategy is applied in the proposed method, where four convolutional long short-term memory networks (LSTM) are embedded in four branches and an recurrent network architecture is developed to iteratively perform the enhancement process. In addition, a joint loss function consisting of the pixel loss, the multi-scale perceptual loss, the adversarial loss, the gradient loss, and the color loss is framed to optimize the model parameters. To evaluate the effectiveness of proposed MBPNet, three popularly used benchmark databases are used for both quantitative and qualitative assessments. The experimental results confirm that the proposed MBPNet obviously outperforms other state-of-the-art approaches in terms of quantitative and qualitative results. The code will be available at https://github.com/kbzhang0505/MBPNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣的丝完成签到 ,获得积分10
7秒前
隐形问萍完成签到,获得积分10
9秒前
隐形问萍发布了新的文献求助10
12秒前
信勇完成签到 ,获得积分10
16秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
明理丹烟应助科研通管家采纳,获得10
1分钟前
1分钟前
Jing发布了新的文献求助10
1分钟前
1分钟前
Raunio完成签到,获得积分10
2分钟前
李健的小迷弟应助小白菜采纳,获得30
2分钟前
2分钟前
3分钟前
小白菜完成签到,获得积分10
3分钟前
小白菜发布了新的文献求助30
3分钟前
赎罪完成签到 ,获得积分10
3分钟前
Puan发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
ma发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
Alicia完成签到 ,获得积分10
5分钟前
郑夏岚完成签到,获得积分20
5分钟前
314gjj完成签到,获得积分10
6分钟前
daishuheng完成签到 ,获得积分10
6分钟前
uss完成签到,获得积分10
6分钟前
徐芳菲完成签到 ,获得积分10
6分钟前
华仔应助科研通管家采纳,获得10
7分钟前
逝水完成签到 ,获得积分10
7分钟前
MET1应助ma采纳,获得10
9分钟前
spark810完成签到 ,获得积分0
9分钟前
明理丹烟应助科研通管家采纳,获得10
9分钟前
千早爱音完成签到,获得积分10
9分钟前
asdf完成签到,获得积分10
9分钟前
爆米花应助机灵的衫采纳,获得30
10分钟前
Liberal-5完成签到,获得积分10
10分钟前
852应助Liberal-5采纳,获得10
10分钟前
兴尽晚回舟完成签到 ,获得积分10
10分钟前
垚祎完成签到 ,获得积分10
10分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
中国有机(类)肥料 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3059522
求助须知:如何正确求助?哪些是违规求助? 2715495
关于积分的说明 7445289
捐赠科研通 2361022
什么是DOI,文献DOI怎么找? 1251174
科研通“疑难数据库(出版商)”最低求助积分说明 607698
版权声明 596448