已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Branch and Progressive Network for Low-Light Image Enhancement

计算机科学 人工智能 像素 计算机视觉 水准点(测量) 卷积神经网络 亮度 过程(计算) 模式识别(心理学) 光学 大地测量学 操作系统 物理 地理
作者
Kaibing Zhang,Cheng Yuan,Jie Li,Xinbo Gao,Minqi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2295-2308 被引量:29
标识
DOI:10.1109/tip.2023.3266171
摘要

Low-light images incur several complicated degradation factors such as poor brightness, low contrast, color degradation, and noise. Most previous deep learning-based approaches, however, only learn the mapping relationship of single channel between the input low-light images and the expected normal-light images, which is insufficient enough to deal with low-light images captured under uncertain imaging environment. Moreover, too deeper network architecture is not conducive to recover low-light images due to extremely low values in pixels. To surmount aforementioned issues, in this paper we propose a novel multi-branch and progressive network (MBPNet) for low-light image enhancement. To be more specific, the proposed MBPNet is comprised of four different branches which build the mapping relationship at different scales. The followed fusion is performed on the outputs obtained from four different branches for the final enhanced image. Furthermore, to better handle the difficulty of delivering structural information of low-light images with low values in pixels, a progressive enhancement strategy is applied in the proposed method, where four convolutional long short-term memory networks (LSTM) are embedded in four branches and an recurrent network architecture is developed to iteratively perform the enhancement process. In addition, a joint loss function consisting of the pixel loss, the multi-scale perceptual loss, the adversarial loss, the gradient loss, and the color loss is framed to optimize the model parameters. To evaluate the effectiveness of proposed MBPNet, three popularly used benchmark databases are used for both quantitative and qualitative assessments. The experimental results confirm that the proposed MBPNet obviously outperforms other state-of-the-art approaches in terms of quantitative and qualitative results. The code will be available at https://github.com/kbzhang0505/MBPNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
samurai完成签到,获得积分10
2秒前
啊诺发布了新的文献求助10
3秒前
小情绪完成签到 ,获得积分10
5秒前
5秒前
酷波er应助星星采纳,获得10
7秒前
慕青应助哦哈哈哈采纳,获得10
7秒前
酷酷问夏完成签到 ,获得积分10
9秒前
9秒前
Omni完成签到,获得积分10
10秒前
ontheway发布了新的文献求助10
10秒前
温暖的木瓜完成签到 ,获得积分10
11秒前
12秒前
13秒前
lee发布了新的文献求助10
13秒前
混子玉发布了新的文献求助10
16秒前
17秒前
北克完成签到 ,获得积分10
18秒前
18秒前
科研通AI2S应助小废物采纳,获得20
19秒前
22秒前
23秒前
24秒前
PONY完成签到,获得积分10
25秒前
要吃虾饺吗完成签到,获得积分10
26秒前
丑鱼丑鱼我爱你完成签到 ,获得积分10
27秒前
科研帽发布了新的文献求助10
28秒前
仲谋给仲谋的求助进行了留言
28秒前
所所应助like采纳,获得10
29秒前
29秒前
30秒前
30秒前
上官若男应助混子玉采纳,获得10
30秒前
32秒前
33秒前
归无发布了新的文献求助10
35秒前
35秒前
朴素的闭月完成签到,获得积分10
36秒前
36秒前
852应助科研通管家采纳,获得10
36秒前
今后应助科研通管家采纳,获得10
36秒前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644324
求助须知:如何正确求助?哪些是违规求助? 4763793
关于积分的说明 15024805
捐赠科研通 4802760
什么是DOI,文献DOI怎么找? 2567542
邀请新用户注册赠送积分活动 1525311
关于科研通互助平台的介绍 1484767