Multi-Branch and Progressive Network for Low-Light Image Enhancement

计算机科学 人工智能 像素 计算机视觉 水准点(测量) 卷积神经网络 亮度 过程(计算) 模式识别(心理学) 光学 物理 大地测量学 地理 操作系统
作者
Kaibing Zhang,Cheng Yuan,Jie Li,Xinbo Gao,Minqi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2295-2308 被引量:29
标识
DOI:10.1109/tip.2023.3266171
摘要

Low-light images incur several complicated degradation factors such as poor brightness, low contrast, color degradation, and noise. Most previous deep learning-based approaches, however, only learn the mapping relationship of single channel between the input low-light images and the expected normal-light images, which is insufficient enough to deal with low-light images captured under uncertain imaging environment. Moreover, too deeper network architecture is not conducive to recover low-light images due to extremely low values in pixels. To surmount aforementioned issues, in this paper we propose a novel multi-branch and progressive network (MBPNet) for low-light image enhancement. To be more specific, the proposed MBPNet is comprised of four different branches which build the mapping relationship at different scales. The followed fusion is performed on the outputs obtained from four different branches for the final enhanced image. Furthermore, to better handle the difficulty of delivering structural information of low-light images with low values in pixels, a progressive enhancement strategy is applied in the proposed method, where four convolutional long short-term memory networks (LSTM) are embedded in four branches and an recurrent network architecture is developed to iteratively perform the enhancement process. In addition, a joint loss function consisting of the pixel loss, the multi-scale perceptual loss, the adversarial loss, the gradient loss, and the color loss is framed to optimize the model parameters. To evaluate the effectiveness of proposed MBPNet, three popularly used benchmark databases are used for both quantitative and qualitative assessments. The experimental results confirm that the proposed MBPNet obviously outperforms other state-of-the-art approaches in terms of quantitative and qualitative results. The code will be available at https://github.com/kbzhang0505/MBPNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山雀发布了新的文献求助10
刚刚
tans0008完成签到,获得积分10
刚刚
刚刚
独特的豌豆完成签到,获得积分10
1秒前
蓝桉完成签到,获得积分10
1秒前
Naomi发布了新的文献求助10
1秒前
清脆的夜白完成签到,获得积分10
1秒前
李健应助wjh采纳,获得10
1秒前
luoxiaoyan1927完成签到,获得积分10
1秒前
倒立才能看文献完成签到,获得积分10
1秒前
dryyu发布了新的文献求助10
1秒前
谜记完成签到,获得积分10
1秒前
da完成签到,获得积分10
2秒前
Ji发布了新的文献求助10
2秒前
astond完成签到,获得积分10
2秒前
搞怪莫茗发布了新的文献求助10
2秒前
自由的信仰完成签到,获得积分10
3秒前
thinking完成签到,获得积分20
5秒前
5秒前
CAOHOU应助sasa采纳,获得10
5秒前
书桓发布了新的文献求助10
5秒前
天天快乐应助科研小白采纳,获得10
5秒前
李李李李李完成签到,获得积分10
6秒前
朴实一一完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
西瓜完成签到,获得积分10
8秒前
如初完成签到,获得积分10
8秒前
9秒前
科研小白完成签到,获得积分10
9秒前
FashionBoy应助ww采纳,获得10
9秒前
飞快的盼易完成签到,获得积分10
9秒前
嘟嘟金子完成签到,获得积分10
9秒前
梅溪湖的提词器完成签到,获得积分10
12秒前
12秒前
13秒前
大力的馒头完成签到 ,获得积分10
13秒前
冷傲向松完成签到,获得积分10
13秒前
Yiyyan完成签到,获得积分10
14秒前
希望天下0贩的0应助wkyt采纳,获得10
14秒前
认真小海豚应助悠咪采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044