亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Branch and Progressive Network for Low-Light Image Enhancement

计算机科学 人工智能 像素 计算机视觉 水准点(测量) 卷积神经网络 亮度 过程(计算) 模式识别(心理学) 光学 大地测量学 操作系统 物理 地理
作者
Kaibing Zhang,Cheng Yuan,Jie Li,Xinbo Gao,Minqi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2295-2308 被引量:29
标识
DOI:10.1109/tip.2023.3266171
摘要

Low-light images incur several complicated degradation factors such as poor brightness, low contrast, color degradation, and noise. Most previous deep learning-based approaches, however, only learn the mapping relationship of single channel between the input low-light images and the expected normal-light images, which is insufficient enough to deal with low-light images captured under uncertain imaging environment. Moreover, too deeper network architecture is not conducive to recover low-light images due to extremely low values in pixels. To surmount aforementioned issues, in this paper we propose a novel multi-branch and progressive network (MBPNet) for low-light image enhancement. To be more specific, the proposed MBPNet is comprised of four different branches which build the mapping relationship at different scales. The followed fusion is performed on the outputs obtained from four different branches for the final enhanced image. Furthermore, to better handle the difficulty of delivering structural information of low-light images with low values in pixels, a progressive enhancement strategy is applied in the proposed method, where four convolutional long short-term memory networks (LSTM) are embedded in four branches and an recurrent network architecture is developed to iteratively perform the enhancement process. In addition, a joint loss function consisting of the pixel loss, the multi-scale perceptual loss, the adversarial loss, the gradient loss, and the color loss is framed to optimize the model parameters. To evaluate the effectiveness of proposed MBPNet, three popularly used benchmark databases are used for both quantitative and qualitative assessments. The experimental results confirm that the proposed MBPNet obviously outperforms other state-of-the-art approaches in terms of quantitative and qualitative results. The code will be available at https://github.com/kbzhang0505/MBPNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ceeray23采纳,获得20
33秒前
48秒前
清爽伯云发布了新的文献求助30
54秒前
清爽伯云完成签到,获得积分10
1分钟前
shaonianzu完成签到 ,获得积分10
1分钟前
寂寞的尔丝完成签到 ,获得积分10
1分钟前
ccc完成签到 ,获得积分10
1分钟前
coolplex完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
科目三应助艺玲采纳,获得10
1分钟前
1分钟前
艺玲发布了新的文献求助10
1分钟前
婉莹完成签到 ,获得积分0
2分钟前
陶醉巧凡完成签到,获得积分10
2分钟前
土土发布了新的文献求助10
3分钟前
LPPQBB应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
WXKennyS发布了新的文献求助10
3分钟前
阳光发布了新的文献求助10
4分钟前
导师求放过完成签到,获得积分0
4分钟前
水水的完成签到,获得积分10
4分钟前
4分钟前
阳光完成签到,获得积分10
4分钟前
大模型应助阳光采纳,获得10
4分钟前
4分钟前
沉静的迎荷完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
Abdurrahman完成签到,获得积分10
5分钟前
土土发布了新的文献求助10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356933
求助须知:如何正确求助?哪些是违规求助? 4488558
关于积分的说明 13972332
捐赠科研通 4389593
什么是DOI,文献DOI怎么找? 2411660
邀请新用户注册赠送积分活动 1404209
关于科研通互助平台的介绍 1378273