已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Branch and Progressive Network for Low-Light Image Enhancement

计算机科学 人工智能 像素 计算机视觉 水准点(测量) 卷积神经网络 亮度 过程(计算) 模式识别(心理学) 光学 大地测量学 操作系统 物理 地理
作者
Kaibing Zhang,Cheng Yuan,Jie Li,Xinbo Gao,Minqi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2295-2308 被引量:29
标识
DOI:10.1109/tip.2023.3266171
摘要

Low-light images incur several complicated degradation factors such as poor brightness, low contrast, color degradation, and noise. Most previous deep learning-based approaches, however, only learn the mapping relationship of single channel between the input low-light images and the expected normal-light images, which is insufficient enough to deal with low-light images captured under uncertain imaging environment. Moreover, too deeper network architecture is not conducive to recover low-light images due to extremely low values in pixels. To surmount aforementioned issues, in this paper we propose a novel multi-branch and progressive network (MBPNet) for low-light image enhancement. To be more specific, the proposed MBPNet is comprised of four different branches which build the mapping relationship at different scales. The followed fusion is performed on the outputs obtained from four different branches for the final enhanced image. Furthermore, to better handle the difficulty of delivering structural information of low-light images with low values in pixels, a progressive enhancement strategy is applied in the proposed method, where four convolutional long short-term memory networks (LSTM) are embedded in four branches and an recurrent network architecture is developed to iteratively perform the enhancement process. In addition, a joint loss function consisting of the pixel loss, the multi-scale perceptual loss, the adversarial loss, the gradient loss, and the color loss is framed to optimize the model parameters. To evaluate the effectiveness of proposed MBPNet, three popularly used benchmark databases are used for both quantitative and qualitative assessments. The experimental results confirm that the proposed MBPNet obviously outperforms other state-of-the-art approaches in terms of quantitative and qualitative results. The code will be available at https://github.com/kbzhang0505/MBPNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
恒心捏发布了新的文献求助10
1秒前
小虎牙发布了新的文献求助10
2秒前
再学一分钟完成签到,获得积分10
5秒前
6秒前
SciGPT应助江蹇采纳,获得10
9秒前
9秒前
遇上就这样吧完成签到,获得积分0
9秒前
tingting发布了新的文献求助10
10秒前
淡然以柳完成签到 ,获得积分10
13秒前
空空伊完成签到 ,获得积分10
13秒前
13秒前
张涛完成签到 ,获得积分10
14秒前
小虎牙发布了新的文献求助30
14秒前
14秒前
洁净沛蓝发布了新的文献求助10
14秒前
15秒前
可爱的函函应助啊呆哦采纳,获得10
16秒前
17秒前
可爱的函函应助虚心碧采纳,获得10
20秒前
GIA发布了新的文献求助10
20秒前
kevin完成签到 ,获得积分10
22秒前
24秒前
25秒前
25秒前
yipmyonphu完成签到,获得积分10
27秒前
Omni完成签到,获得积分10
28秒前
曾予嘉完成签到 ,获得积分10
29秒前
陈志亨发布了新的文献求助10
29秒前
恋苳发布了新的文献求助10
29秒前
18298859129完成签到,获得积分10
29秒前
小虎牙发布了新的文献求助10
30秒前
啊呆哦发布了新的文献求助10
31秒前
aaaaaYue完成签到,获得积分20
35秒前
37秒前
洁净沛蓝完成签到,获得积分10
39秒前
小虎牙发布了新的文献求助10
40秒前
Akim应助空空伊采纳,获得10
40秒前
GIA完成签到,获得积分10
43秒前
aaaaaYue发布了新的文献求助10
43秒前
你嵙这个期刊没买完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497941
求助须知:如何正确求助?哪些是违规求助? 4595361
关于积分的说明 14448923
捐赠科研通 4528029
什么是DOI,文献DOI怎么找? 2481322
邀请新用户注册赠送积分活动 1465542
关于科研通互助平台的介绍 1438200