Multi-Branch and Progressive Network for Low-Light Image Enhancement

计算机科学 人工智能 像素 计算机视觉 水准点(测量) 卷积神经网络 亮度 过程(计算) 模式识别(心理学) 光学 大地测量学 操作系统 物理 地理
作者
Kaibing Zhang,Cheng Yuan,Jie Li,Xinbo Gao,Minqi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2295-2308 被引量:29
标识
DOI:10.1109/tip.2023.3266171
摘要

Low-light images incur several complicated degradation factors such as poor brightness, low contrast, color degradation, and noise. Most previous deep learning-based approaches, however, only learn the mapping relationship of single channel between the input low-light images and the expected normal-light images, which is insufficient enough to deal with low-light images captured under uncertain imaging environment. Moreover, too deeper network architecture is not conducive to recover low-light images due to extremely low values in pixels. To surmount aforementioned issues, in this paper we propose a novel multi-branch and progressive network (MBPNet) for low-light image enhancement. To be more specific, the proposed MBPNet is comprised of four different branches which build the mapping relationship at different scales. The followed fusion is performed on the outputs obtained from four different branches for the final enhanced image. Furthermore, to better handle the difficulty of delivering structural information of low-light images with low values in pixels, a progressive enhancement strategy is applied in the proposed method, where four convolutional long short-term memory networks (LSTM) are embedded in four branches and an recurrent network architecture is developed to iteratively perform the enhancement process. In addition, a joint loss function consisting of the pixel loss, the multi-scale perceptual loss, the adversarial loss, the gradient loss, and the color loss is framed to optimize the model parameters. To evaluate the effectiveness of proposed MBPNet, three popularly used benchmark databases are used for both quantitative and qualitative assessments. The experimental results confirm that the proposed MBPNet obviously outperforms other state-of-the-art approaches in terms of quantitative and qualitative results. The code will be available at https://github.com/kbzhang0505/MBPNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ShellyHan发布了新的文献求助100
1秒前
星城浮轩完成签到 ,获得积分10
2秒前
2秒前
顾勇完成签到,获得积分0
2秒前
小蘑菇应助js采纳,获得10
2秒前
3秒前
3秒前
淑儿哥哥完成签到,获得积分10
3秒前
月月完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
自由的语柳完成签到,获得积分10
5秒前
5秒前
雨碎寒江完成签到,获得积分10
5秒前
科研通AI6.1应助郑凯翔采纳,获得10
6秒前
爱喝冰可乐完成签到,获得积分10
6秒前
张静发布了新的文献求助10
7秒前
小青椒应助zz采纳,获得30
7秒前
xelloss完成签到,获得积分10
8秒前
8秒前
8秒前
桐桐应助nanonamo采纳,获得10
8秒前
Hello应助cym采纳,获得10
8秒前
朝与暮完成签到,获得积分10
9秒前
33完成签到,获得积分10
9秒前
Akim应助sixone采纳,获得10
10秒前
Ryan完成签到,获得积分10
10秒前
ccc发布了新的文献求助10
10秒前
静静等待完成签到,获得积分10
10秒前
11秒前
ST发布了新的文献求助10
11秒前
xiatian完成签到,获得积分10
12秒前
科研通AI6.1应助淑儿哥哥采纳,获得10
12秒前
彭于晏应助TPJH采纳,获得10
12秒前
12秒前
Owen应助唐唐采纳,获得10
14秒前
14秒前
14秒前
张萌完成签到 ,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765527
求助须知:如何正确求助?哪些是违规求助? 5561576
关于积分的说明 15409288
捐赠科研通 4900231
什么是DOI,文献DOI怎么找? 2636244
邀请新用户注册赠送积分活动 1584487
关于科研通互助平台的介绍 1539736