亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing uniform oxygen defect engineering on primary particle level for high-stability lithium-rich cathode materials

法拉第效率 锂(药物) 破损 阴极 氧气 材料科学 电化学 化学工程 限制 离子 收缩率 电极 复合材料 化学 工程类 电气工程 机械工程 物理化学 有机化学 医学 内分泌学
作者
Bing Zhao,Chao Shen,Hao Yan,Jingwei Xie,Xiaoyu Liu,Yang Dai,Jiujun Zhang,Jin‐Cheng Zheng,Lijun Wu,Yimei Zhu,Yong Jiang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:465: 142928-142928 被引量:19
标识
DOI:10.1016/j.cej.2023.142928
摘要

Lithium-rich layered cathode materials are considered to be research focus of cathode candidates for next-generation lithium-ion batteries due to their high specific capacity and low cost. However, lattice deoxidation associated with elemental migration and internal local shrinkage usually results in deteriorated cyclic performance and notorious voltage attenuation, severely limiting its application. In this paper, we have successfully injected uniform oxygen defects into surface region of Li1.2Ni0.13Co0.13Mn0.54O2 primary particles under the high-pressure and weak carbonate environment. Various experimental investigations indicate that the injected robust oxygen defects can not only mitigate detrimental interfacial reactions but also suppress unfavorable lattice variation and particle breakage. More importantly, theoretical calculations unravel the critical roles of oxygen defects in regulating energy band structure for strengthened anionic reversibility. Owing to stabilization effects of unique oxygen defect engineering, the modified Li1.2Ni0.13Co0.13Mn0.54O2 cathode has harvested dramatically enhanced electrochemical performance including a high initial coulombic efficiency of 96.6%, an outstanding capacity retention of 91.96% (1C, 200 cycles) and suppressed voltage decay of only 1.62 mV per cycle. Therefore, this facile and effective defect engineering strategy could establish new guidance for promoting practical application of Li-rich Mn-based cathode material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liiiiiiiiii发布了新的文献求助10
刚刚
三水完成签到 ,获得积分20
12秒前
小净完成签到 ,获得积分20
24秒前
cccttt完成签到,获得积分10
28秒前
mmyhn发布了新的文献求助10
35秒前
Echo完成签到,获得积分10
41秒前
无花果应助zzx采纳,获得10
43秒前
可爱的香菇完成签到 ,获得积分10
48秒前
52秒前
dovejingling完成签到,获得积分10
55秒前
lulu发布了新的文献求助20
58秒前
Jasper应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
1分钟前
李沐唅完成签到 ,获得积分10
1分钟前
核桃发布了新的文献求助30
1分钟前
1分钟前
阿凯完成签到 ,获得积分10
1分钟前
zzx发布了新的文献求助10
1分钟前
zzx完成签到,获得积分10
1分钟前
小泉完成签到 ,获得积分10
1分钟前
星辰大海应助高兴的忆曼采纳,获得10
2分钟前
英姑应助核桃采纳,获得10
2分钟前
科研通AI5应助核桃采纳,获得10
2分钟前
科研通AI5应助核桃采纳,获得10
2分钟前
可爱的函函应助核桃采纳,获得10
2分钟前
Liufgui应助核桃采纳,获得10
2分钟前
在水一方应助核桃采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
LONG完成签到 ,获得积分10
3分钟前
秋风今是完成签到 ,获得积分10
3分钟前
3分钟前
核桃发布了新的文献求助10
3分钟前
biubiubiu驳回了852应助
4分钟前
AUGKING27完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990045
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256334
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805146
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228