Constructing uniform oxygen defect engineering on primary particle level for high-stability lithium-rich cathode materials

法拉第效率 锂(药物) 破损 阴极 氧气 材料科学 电化学 化学工程 限制 离子 收缩率 电极 复合材料 化学 工程类 电气工程 机械工程 物理化学 有机化学 内分泌学 医学
作者
Bing Zhao,Chao Shen,Hao Yan,Jingwei Xie,Xiaoyu Liu,Yang Dai,Jiujun Zhang,Jin‐Cheng Zheng,Lijun Wu,Yimei Zhu,Yong Jiang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:465: 142928-142928 被引量:30
标识
DOI:10.1016/j.cej.2023.142928
摘要

Lithium-rich layered cathode materials are considered to be research focus of cathode candidates for next-generation lithium-ion batteries due to their high specific capacity and low cost. However, lattice deoxidation associated with elemental migration and internal local shrinkage usually results in deteriorated cyclic performance and notorious voltage attenuation, severely limiting its application. In this paper, we have successfully injected uniform oxygen defects into surface region of Li1.2Ni0.13Co0.13Mn0.54O2 primary particles under the high-pressure and weak carbonate environment. Various experimental investigations indicate that the injected robust oxygen defects can not only mitigate detrimental interfacial reactions but also suppress unfavorable lattice variation and particle breakage. More importantly, theoretical calculations unravel the critical roles of oxygen defects in regulating energy band structure for strengthened anionic reversibility. Owing to stabilization effects of unique oxygen defect engineering, the modified Li1.2Ni0.13Co0.13Mn0.54O2 cathode has harvested dramatically enhanced electrochemical performance including a high initial coulombic efficiency of 96.6%, an outstanding capacity retention of 91.96% (1C, 200 cycles) and suppressed voltage decay of only 1.62 mV per cycle. Therefore, this facile and effective defect engineering strategy could establish new guidance for promoting practical application of Li-rich Mn-based cathode material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助不打游戏_采纳,获得10
刚刚
orixero应助hzy采纳,获得10
1秒前
1秒前
大个应助怕黑海冬采纳,获得10
1秒前
体贴的之柔完成签到,获得积分10
2秒前
2秒前
nn完成签到,获得积分10
2秒前
科研通AI6应助Yy采纳,获得10
2秒前
nannan完成签到,获得积分20
3秒前
3秒前
3秒前
渤大小mn发布了新的文献求助10
3秒前
4秒前
4秒前
starrism发布了新的文献求助10
4秒前
隐形曼青应助谦让的含海采纳,获得10
4秒前
沐沐完成签到,获得积分10
4秒前
云溪发布了新的文献求助10
5秒前
Dimples完成签到,获得积分10
5秒前
5秒前
dong发布了新的文献求助10
5秒前
今后应助老毛采纳,获得10
5秒前
6秒前
cuicy完成签到,获得积分10
6秒前
hdbys完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
可靠的西牛关注了科研通微信公众号
7秒前
万能图书馆应助sss采纳,获得10
7秒前
张英歌发布了新的文献求助10
8秒前
算命先生完成签到,获得积分10
8秒前
可爱的函函应助王女士采纳,获得10
8秒前
nannan发布了新的文献求助10
8秒前
8秒前
Ellen完成签到,获得积分10
9秒前
善学以致用应助fun采纳,获得10
9秒前
科研通AI6应助鳗鱼觅珍采纳,获得30
9秒前
Hello应助夏安采纳,获得10
9秒前
yeoyoo驳回了mono应助
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853