DETRs Beat YOLOs on Real-time Object Detection

计算机科学 探测器 编码器 目标检测 实时计算 加速 人工智能 数据挖掘 模式识别(心理学) 电信 操作系统
作者
Wenyu Lv,Shangliang Xu,Y. Zhao,Guanzhong Wang,Jinman Wei,Cheng Cui,Yuning Du,Qingqing Dang,Yi Liu
出处
期刊:Cornell University - arXiv 被引量:114
标识
DOI:10.48550/arxiv.2304.08069
摘要

The YOLO series has become the most popular framework for real-time object detection due to its reasonable trade-off between speed and accuracy. However, we observe that the speed and accuracy of YOLOs are negatively affected by the NMS. Recently, end-to-end Transformer-based detectors (DETRs) have provided an alternative to eliminating NMS. Nevertheless, the high computational cost limits their practicality and hinders them from fully exploiting the advantage of excluding NMS. In this paper, we propose the Real-Time DEtection TRansformer (RT-DETR), the first real-time end-to-end object detector to our best knowledge that addresses the above dilemma. We build RT-DETR in two steps, drawing on the advanced DETR: first we focus on maintaining accuracy while improving speed, followed by maintaining speed while improving accuracy. Specifically, we design an efficient hybrid encoder to expeditiously process multi-scale features by decoupling intra-scale interaction and cross-scale fusion to improve speed. Then, we propose the uncertainty-minimal query selection to provide high-quality initial queries to the decoder, thereby improving accuracy. In addition, RT-DETR supports flexible speed tuning by adjusting the number of decoder layers to adapt to various scenarios without retraining. Our RT-DETR-R50 / R101 achieves 53.1% / 54.3% AP on COCO and 108 / 74 FPS on T4 GPU, outperforming previously advanced YOLOs in both speed and accuracy. We also develop scaled RT-DETRs that outperform the lighter YOLO detectors (S and M models). Furthermore, RT-DETR-R50 outperforms DINO-R50 by 2.2% AP in accuracy and about 21 times in FPS. After pre-training with Objects365, RT-DETR-R50 / R101 achieves 55.3% / 56.2% AP. The project page: https://zhao-yian.github.io/RTDETR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
N7发布了新的文献求助10
刚刚
1秒前
春待完成签到,获得积分10
2秒前
nullll完成签到,获得积分10
2秒前
DMMM发布了新的文献求助10
3秒前
4秒前
5秒前
潘宋完成签到,获得积分10
6秒前
6秒前
N7完成签到,获得积分10
8秒前
8秒前
111发布了新的文献求助10
10秒前
北茶发布了新的文献求助10
10秒前
10秒前
hdd发布了新的文献求助10
11秒前
11秒前
Lucas应助DMMM采纳,获得10
11秒前
法号胡来发布了新的文献求助10
11秒前
易安完成签到,获得积分10
13秒前
14秒前
lian完成签到,获得积分10
15秒前
无辜砖头应助TAA66采纳,获得10
17秒前
wg发布了新的文献求助10
18秒前
19秒前
迅速孤容完成签到 ,获得积分10
20秒前
daniel完成签到,获得积分10
21秒前
爆米花应助北茶采纳,获得10
21秒前
负责的大米完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
青柠发布了新的文献求助10
23秒前
wking应助寒月如雪采纳,获得10
23秒前
24秒前
贺小刚发布了新的文献求助10
24秒前
PLT完成签到,获得积分10
24秒前
无奈的书琴完成签到 ,获得积分10
25秒前
很蓝的天发布了新的文献求助20
27秒前
杜杜发布了新的文献求助10
27秒前
喏晨发布了新的文献求助10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155969
求助须知:如何正确求助?哪些是违规求助? 2807310
关于积分的说明 7872521
捐赠科研通 2465654
什么是DOI,文献DOI怎么找? 1312280
科研通“疑难数据库(出版商)”最低求助积分说明 630031
版权声明 601905