DETRs Beat YOLOs on Real-time Object Detection

计算机科学 探测器 编码器 目标检测 实时计算 加速 人工智能 数据挖掘 模式识别(心理学) 电信 操作系统
作者
Wenyu Lv,Shangliang Xu,Y. Zhao,Guanzhong Wang,Jinman Wei,Cheng Cui,Yuning Du,Qingqing Dang,Yi Liu
出处
期刊:Cornell University - arXiv 被引量:114
标识
DOI:10.48550/arxiv.2304.08069
摘要

The YOLO series has become the most popular framework for real-time object detection due to its reasonable trade-off between speed and accuracy. However, we observe that the speed and accuracy of YOLOs are negatively affected by the NMS. Recently, end-to-end Transformer-based detectors (DETRs) have provided an alternative to eliminating NMS. Nevertheless, the high computational cost limits their practicality and hinders them from fully exploiting the advantage of excluding NMS. In this paper, we propose the Real-Time DEtection TRansformer (RT-DETR), the first real-time end-to-end object detector to our best knowledge that addresses the above dilemma. We build RT-DETR in two steps, drawing on the advanced DETR: first we focus on maintaining accuracy while improving speed, followed by maintaining speed while improving accuracy. Specifically, we design an efficient hybrid encoder to expeditiously process multi-scale features by decoupling intra-scale interaction and cross-scale fusion to improve speed. Then, we propose the uncertainty-minimal query selection to provide high-quality initial queries to the decoder, thereby improving accuracy. In addition, RT-DETR supports flexible speed tuning by adjusting the number of decoder layers to adapt to various scenarios without retraining. Our RT-DETR-R50 / R101 achieves 53.1% / 54.3% AP on COCO and 108 / 74 FPS on T4 GPU, outperforming previously advanced YOLOs in both speed and accuracy. We also develop scaled RT-DETRs that outperform the lighter YOLO detectors (S and M models). Furthermore, RT-DETR-R50 outperforms DINO-R50 by 2.2% AP in accuracy and about 21 times in FPS. After pre-training with Objects365, RT-DETR-R50 / R101 achieves 55.3% / 56.2% AP. The project page: https://zhao-yian.github.io/RTDETR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
山橘月完成签到,获得积分10
1秒前
我是老大应助Sun采纳,获得10
1秒前
Yurole发布了新的文献求助10
1秒前
1秒前
炙热的山河完成签到,获得积分10
2秒前
taoliu完成签到,获得积分10
2秒前
火星上念梦完成签到,获得积分20
3秒前
斯文败类应助HHH采纳,获得30
3秒前
Elaine发布了新的文献求助10
4秒前
5秒前
Yurole完成签到,获得积分10
5秒前
5秒前
5秒前
SDNUDRUG完成签到,获得积分10
5秒前
知无涯者发布了新的文献求助10
6秒前
慕青应助聪慧的微笑采纳,获得10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助30
7秒前
7秒前
9秒前
9秒前
mm发布了新的文献求助10
10秒前
10秒前
13秒前
13秒前
Jasper应助Elaine采纳,获得10
16秒前
酷炫的安容完成签到,获得积分10
17秒前
17秒前
带志完成签到,获得积分10
18秒前
18秒前
芸栖完成签到 ,获得积分10
18秒前
19秒前
wdy111应助小狗熊吖i采纳,获得10
21秒前
qq发布了新的文献求助10
23秒前
24秒前
超级无敌暴龙战士完成签到,获得积分10
25秒前
25秒前
奋斗的母鸡关注了科研通微信公众号
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226