Facial Chirality: From Visual Self-Reflection to Robust Facial Feature Learning

计算机科学 人工智能 面部表情 幻觉 稳健性(进化) 判别式 三维人脸识别 模式识别(心理学) 计算机视觉 面部识别系统 特征(语言学) 特征提取 语音识别 人脸检测 生物化学 基因 哲学 语言学 化学
作者
Ling Lo,Hongxia Xie,Hong-Han Shuai,Wen-Huang Cheng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 4275-4284 被引量:12
标识
DOI:10.1109/tmm.2022.3197365
摘要

As a fundamental vision task, facial expression recognition has made substantial progress recently. However, the recognition performance often degrades significantly in real-world scenarios due to the lack of robust facial features. In this paper, we propose an effective facial feature learning method that takes the advantage of facial chirality to discover the discriminative features for facial expression recognition. Most previous studies implicitly assume that human faces are symmetric. However, our work reveals that the facial asymmetric effect can be a crucial clue. Given a face image and its reflection without additional labels, we decouple the emotion-invariant facial features from the input image pair to better capture the emotion-related facial features. Moreover, as our model aligns emotion-related features of the image pair to enhance the recognition performance, the value of precise facial landmark alignment as a pre-processing step is reconsidered in this paper. Experiments demonstrate that the learned emotion-related features outperform the state of the art methods on several facial expression recognition benchmarks as well as real-world occlusion datasets, which manifests the effectiveness and robustness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ky发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
苗条的嘉熙完成签到 ,获得积分10
3秒前
evildoer完成签到 ,获得积分10
3秒前
4秒前
LZ发布了新的文献求助10
5秒前
5秒前
5秒前
toda_erica发布了新的文献求助10
8秒前
段鹏鹏完成签到,获得积分20
9秒前
ky完成签到,获得积分10
11秒前
想不想发布了新的文献求助10
11秒前
zhangzhang发布了新的文献求助10
11秒前
烟花应助Lucky采纳,获得10
11秒前
11秒前
zhengzhao发布了新的文献求助10
11秒前
多多洛完成签到,获得积分10
12秒前
锂铂完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
18秒前
淡然冬灵发布了新的文献求助10
19秒前
20秒前
涛涛发布了新的文献求助10
20秒前
CyrusLiu完成签到,获得积分10
20秒前
wangyue2024完成签到,获得积分10
21秒前
suntee发布了新的文献求助10
21秒前
酷波er应助卡皮巴拉采纳,获得10
22秒前
香蕉醉柳发布了新的文献求助10
22秒前
ff发布了新的文献求助10
23秒前
诚心一一完成签到 ,获得积分10
24秒前
健忘数据线完成签到 ,获得积分10
25秒前
LZ完成签到,获得积分10
27秒前
?申?发布了新的文献求助10
27秒前
27秒前
zhangzhang完成签到,获得积分10
27秒前
28秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348373
求助须知:如何正确求助?哪些是违规求助? 2974612
关于积分的说明 8664853
捐赠科研通 2655245
什么是DOI,文献DOI怎么找? 1453926
科研通“疑难数据库(出版商)”最低求助积分说明 673171
邀请新用户注册赠送积分活动 663370