A Contrastive Graph Convolutional Network for Toe-Tapping Assessment in Parkinson’s Disease

计算机科学 人工智能 图形 出钢 帕金森病 自然语言处理 疾病 医学 工程类 病理 理论计算机科学 机械工程
作者
Rui Guo,Jie Sun,Chencheng Zhang,Xiaohua Qian
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (12): 8864-8874 被引量:8
标识
DOI:10.1109/tcsvt.2022.3195854
摘要

One of the common motor symptoms of Parkinson's disease (PD) is bradykinesia. Automated bradykinesia assessment is critically needed for helping neurologists achieve objective clinical diagnosis and hence provide timely and appropriate medical services. This need has become especially urgent after the outbreak of the coronavirus pandemic in late 2019. Currently, the main factor limiting the accurate assessment is the difficulty of mining the fine-grained discriminative motion features. Therefore, we propose a novel contrastive graph convolutional network for automated and objective toe-tapping assessment, which is one of the most important tests of lower-extremity bradykinesia. Specifically, based on joint sequences extracted from videos, a supervised contrastive learning strategy was followed to cluster together the features of each class, thereby enhancing the specificity of the learnt class-specific features. Subsequently, a multi-stream joint sparse learning mechanism was designed to eliminate potentially similar redundant features of joint position and motion, hence strengthening the discriminability of features extracted from different streams. Finally, a spatial-temporal interaction graph convolutional module was developed to explicitly model remote dependencies across time and space, and hence boost the mining of fine-grained motion features. Comprehensive experimental results demonstrate that this method achieved remarkable classification performance on a clinical video dataset, with an accuracy of 70.04% and an acceptable accuracy of 98.70%. These results obviously outperformed other existing sensor- and video-based methods. The proposed video-based scheme provides a reliable and objective tool for automated quantitative toe-tapping assessment, and is expected to be a viable method for remote medical assessment and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tina完成签到,获得积分10
刚刚
电催化皮皮完成签到,获得积分10
刚刚
大模型应助阿蒙采纳,获得10
1秒前
duguqiubai4完成签到,获得积分10
1秒前
2秒前
meta完成签到,获得积分10
2秒前
大饼完成签到,获得积分10
3秒前
爆米花应助WJM采纳,获得10
3秒前
xiexuqin完成签到,获得积分10
3秒前
3秒前
silentJeremy发布了新的文献求助200
4秒前
JonyiCheng完成签到,获得积分10
4秒前
科研通AI5应助典雅又夏采纳,获得10
5秒前
风趣的无剑完成签到,获得积分10
5秒前
5秒前
anpucle发布了新的文献求助10
5秒前
跳不起来的大神完成签到 ,获得积分10
5秒前
科研乐色完成签到,获得积分10
5秒前
Drew完成签到,获得积分10
7秒前
挤爆沙丁鱼完成签到 ,获得积分10
7秒前
彭于晏应助fff采纳,获得10
7秒前
7秒前
Agernon应助yaya采纳,获得10
7秒前
四夕完成签到 ,获得积分10
8秒前
汉堡包应助执着的小蘑菇采纳,获得10
8秒前
西哈哈发布了新的文献求助10
8秒前
搜集达人应助酷炫大树采纳,获得10
9秒前
9秒前
9秒前
外向的沅完成签到,获得积分20
9秒前
bkagyin应助zy采纳,获得10
10秒前
香蕉觅云应助好了采纳,获得10
10秒前
南逸然发布了新的文献求助10
11秒前
11秒前
xiaohe完成签到,获得积分10
11秒前
11秒前
隐形曼青应助camera采纳,获得10
11秒前
狗狗完成签到 ,获得积分10
12秒前
SciGPT应助Melody采纳,获得10
12秒前
听粥发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678