亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Contrastive Graph Convolutional Network for Toe-Tapping Assessment in Parkinson’s Disease

计算机科学 判别式 人工智能 图形 卷积神经网络 机器学习 模式识别(心理学) 理论计算机科学
作者
Rui Guo,Jie Sun,Chencheng Zhang,Xiaohua Qian
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (12): 8864-8874 被引量:7
标识
DOI:10.1109/tcsvt.2022.3195854
摘要

One of the common motor symptoms of Parkinson’s disease (PD) is bradykinesia. Automated bradykinesia assessment is critically needed for helping neurologists achieve objective clinical diagnosis and hence provide timely and appropriate medical services. This need has become especially urgent after the outbreak of the coronavirus pandemic in late 2019. Currently, the main factor limiting the accurate assessment is the difficulty of mining the fine-grained discriminative motion features. Therefore, we propose a novel contrastive graph convolutional network for automated and objective toe-tapping assessment, which is one of the most important tests of lower-extremity bradykinesia. Specifically, based on joint sequences extracted from videos, a supervised contrastive learning strategy was followed to cluster together the features of each class, thereby enhancing the specificity of the learnt class-specific features. Subsequently, a multi-stream joint sparse learning mechanism was designed to eliminate potentially similar redundant features of joint position and motion, hence strengthening the discriminability of features extracted from different streams. Finally, a spatial-temporal interaction graph convolutional module was developed to explicitly model remote dependencies across time and space, and hence boost the mining of fine-grained motion features. Comprehensive experimental results demonstrate that this method achieved remarkable classification performance on a clinical video dataset, with an accuracy of 70.04% and an acceptable accuracy of 98.70%. These results obviously outperformed other existing sensor- and video-based methods. The proposed video-based scheme provides a reliable and objective tool for automated quantitative toe-tapping assessment, and is expected to be a viable method for remote medical assessment and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Step采纳,获得10
1秒前
cdu给linda的求助进行了留言
3秒前
早睡早起完成签到 ,获得积分10
5秒前
13秒前
14秒前
vv完成签到 ,获得积分10
20秒前
21秒前
21秒前
任性蘑菇完成签到 ,获得积分10
21秒前
好人一生平安完成签到,获得积分10
27秒前
Nn发布了新的文献求助10
31秒前
32秒前
korchid发布了新的文献求助10
35秒前
35秒前
刘大米发布了新的文献求助10
41秒前
41秒前
Step发布了新的文献求助10
47秒前
刘大米完成签到,获得积分10
53秒前
qz发布了新的文献求助10
1分钟前
爱撒娇的寒香完成签到,获得积分10
1分钟前
iorpi完成签到,获得积分10
1分钟前
1分钟前
1分钟前
布通发布了新的文献求助10
1分钟前
剑八发布了新的文献求助10
1分钟前
布通完成签到,获得积分10
1分钟前
ph144h完成签到,获得积分20
1分钟前
剑八完成签到,获得积分10
1分钟前
qz完成签到,获得积分10
1分钟前
花开四海完成签到 ,获得积分10
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
华仔应助任性机器猫采纳,获得10
2分钟前
Roger完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Suyi完成签到,获得积分20
3分钟前
夏天无完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126069
求助须知:如何正确求助?哪些是违规求助? 2776271
关于积分的说明 7729714
捐赠科研通 2431733
什么是DOI,文献DOI怎么找? 1292230
科研通“疑难数据库(出版商)”最低求助积分说明 622601
版权声明 600392