A Contrastive Graph Convolutional Network for Toe-Tapping Assessment in Parkinson’s Disease

计算机科学 人工智能 图形 出钢 帕金森病 自然语言处理 疾病 医学 工程类 病理 机械工程 理论计算机科学
作者
Rui Guo,Jie Sun,Chencheng Zhang,Xiaohua Qian
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (12): 8864-8874 被引量:8
标识
DOI:10.1109/tcsvt.2022.3195854
摘要

One of the common motor symptoms of Parkinson's disease (PD) is bradykinesia. Automated bradykinesia assessment is critically needed for helping neurologists achieve objective clinical diagnosis and hence provide timely and appropriate medical services. This need has become especially urgent after the outbreak of the coronavirus pandemic in late 2019. Currently, the main factor limiting the accurate assessment is the difficulty of mining the fine-grained discriminative motion features. Therefore, we propose a novel contrastive graph convolutional network for automated and objective toe-tapping assessment, which is one of the most important tests of lower-extremity bradykinesia. Specifically, based on joint sequences extracted from videos, a supervised contrastive learning strategy was followed to cluster together the features of each class, thereby enhancing the specificity of the learnt class-specific features. Subsequently, a multi-stream joint sparse learning mechanism was designed to eliminate potentially similar redundant features of joint position and motion, hence strengthening the discriminability of features extracted from different streams. Finally, a spatial-temporal interaction graph convolutional module was developed to explicitly model remote dependencies across time and space, and hence boost the mining of fine-grained motion features. Comprehensive experimental results demonstrate that this method achieved remarkable classification performance on a clinical video dataset, with an accuracy of 70.04% and an acceptable accuracy of 98.70%. These results obviously outperformed other existing sensor- and video-based methods. The proposed video-based scheme provides a reliable and objective tool for automated quantitative toe-tapping assessment, and is expected to be a viable method for remote medical assessment and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早上坏发布了新的文献求助20
1秒前
新123关注了科研通微信公众号
2秒前
吕嫣娆完成签到 ,获得积分10
6秒前
7秒前
bb完成签到,获得积分10
7秒前
LeonPan发布了新的文献求助10
7秒前
小二郎应助朝风采纳,获得10
7秒前
7秒前
杨亚轩完成签到,获得积分10
10秒前
zzx完成签到 ,获得积分10
11秒前
标致冰海完成签到 ,获得积分10
11秒前
12秒前
路宝发布了新的文献求助10
12秒前
李爱国应助irisy采纳,获得10
13秒前
16秒前
kk发布了新的文献求助10
16秒前
18秒前
深情安青应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
顺心牛排完成签到,获得积分10
21秒前
愤怒的山兰完成签到,获得积分10
21秒前
shhoing应助TK采纳,获得10
22秒前
Accept发布了新的文献求助10
23秒前
王俊发布了新的文献求助10
23秒前
Akim应助vagabond采纳,获得10
25秒前
juan发布了新的文献求助10
25秒前
WSYang完成签到,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344792
求助须知:如何正确求助?哪些是违规求助? 4479975
关于积分的说明 13944959
捐赠科研通 4377204
什么是DOI,文献DOI怎么找? 2405147
邀请新用户注册赠送积分活动 1397687
关于科研通互助平台的介绍 1370008