Broadband acoustic meta-liner with metal foam approaching causality-governed minimal thickness

材料科学 声学 金属泡沫 复合材料 宽带 因果关系(物理学) 工程类 电信 物理 量子力学
作者
Hua Ding,Nengyin Wang,Sheng Qiu,Sibo Huang,Zhiling Zhou,Chengcheng Zhou,Bin Jia,Yong Li
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:232: 107601-107601 被引量:59
标识
DOI:10.1016/j.ijmecsci.2022.107601
摘要

Acoustic absorbers based on resonant cavities or porous materials have been extensively investigated for developing acoustic liners but still suffer from narrow working frequency bands or bulky sizes. Here, we present a meta-liner capable of high-efficiency and broadband sound attenuation via the causality-governed minimal thickness, which utilizes the coherent couplings among the resonant structures and porous materials to enhance the absorption efficiency. The meta-liner consists of a series of parallel-coupled neck-embedded Helmholtz resonators (NEHRs) and a micro-perforated panel (MPP) backed with a metal-foam-filled gap. In constructing the meta-liner, the metal foam plays an essential role in achieving the over-damped condition and the suppression of impedance oscillation, which therefore facilitates the realization of the minimum thickness and the consistently-high absorption avoiding absorption dips. Distinct from the design methods employed in previous studies that take deficient consideration of the effect of high-order acoustic waves, this work introduces the acoustic grating diffraction theory to comprehensively modulate the coupling effects of meta-liners’ components from fundamental and high-order waves, which enables more precise modulation of meta-liners and leads to improve absorption performance in practice. As a proof-of-concept demonstration, we theoretically designed and experimentally validated a meta-liner supporting unanimously high-efficiency sound absorption from 800 Hz to 3200 Hz with a thickness of only 40 mm. Our work enriches the design concepts of acoustic liners and provides an efficient pathway to construct broadband meta-liners against absorption dips via the causality-governed thinnest structures, which may benefit the applications in noise-control engineering and impedance engineering. • The presented meta-liner with metal foam achieves unanimously high-efficiency sound absorption from 800 Hz to 3200 Hz via a thin structure of 40 mm. • Metal foam is utilized to modulate the intrinsic losses of the meta-liner in light of the causality-governed optimal condition. • The theoretical model enables efficient modulation of high-order couplings of complex acoustic liners and contributes to improved absorption performance. • The coupling effects among the meta-liners’ components of dominants the overall absorption performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助曹梦梦采纳,获得10
刚刚
Huguizhou发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
AAA院士杰青批发完成签到,获得积分10
3秒前
Ava应助阿诺德采纳,获得10
3秒前
3秒前
zz完成签到,获得积分10
3秒前
完美世界应助21312WE2VC采纳,获得10
4秒前
4秒前
4秒前
王小小发布了新的文献求助10
5秒前
娜娜完成签到 ,获得积分10
5秒前
6秒前
木木发布了新的文献求助10
7秒前
Bailey完成签到,获得积分10
7秒前
8秒前
8秒前
王舒心关注了科研通微信公众号
8秒前
8秒前
9秒前
kidult完成签到,获得积分10
9秒前
10秒前
fugdu发布了新的文献求助10
10秒前
Hello应助友好太兰采纳,获得10
10秒前
12秒前
12秒前
hgy完成签到 ,获得积分10
13秒前
曹梦梦发布了新的文献求助10
14秒前
聪慧的白薇完成签到,获得积分20
14秒前
敏感向雪完成签到,获得积分10
15秒前
15秒前
科研通AI6应助oddfunction采纳,获得10
15秒前
oo发布了新的文献求助10
16秒前
刘恩瑜完成签到 ,获得积分10
16秒前
行者无疆发布了新的文献求助10
16秒前
的能用纸完成签到,获得积分20
16秒前
肖肖完成签到,获得积分10
16秒前
善学以致用应助木木采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367