Broadband acoustic meta-liner with metal foam approaching causality-governed minimal thickness

材料科学 声学 吸收(声学) 声阻抗 衰减 谐振器 宽带 亥姆霍兹谐振器 声衰减 振荡(细胞信号) 工作(物理)
作者
Hua Ding,Nengyin Wang,Sheng Qiu,Sibo Huang,Zhiling Zhou,Chengcheng Zhou,Bin Jia,Yong Li
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:232: 107601-107601
标识
DOI:10.1016/j.ijmecsci.2022.107601
摘要

Acoustic absorbers based on resonant cavities or porous materials have been extensively investigated for developing acoustic liners but still suffer from narrow working frequency bands or bulky sizes. Here, we present a meta-liner capable of high-efficiency and broadband sound attenuation via the causality-governed minimal thickness, which utilizes the coherent couplings among the resonant structures and porous materials to enhance the absorption efficiency. The meta-liner consists of a series of parallel-coupled neck-embedded Helmholtz resonators (NEHRs) and a micro-perforated panel (MPP) backed with a metal-foam-filled gap. In constructing the meta-liner, the metal foam plays an essential role in achieving the over-damped condition and the suppression of impedance oscillation, which therefore facilitates the realization of the minimum thickness and the consistently-high absorption avoiding absorption dips. Distinct from the design methods employed in previous studies that take deficient consideration of the effect of high-order acoustic waves, this work introduces the acoustic grating diffraction theory to comprehensively modulate the coupling effects of meta-liners’ components from fundamental and high-order waves, which enables more precise modulation of meta-liners and leads to improve absorption performance in practice. As a proof-of-concept demonstration, we theoretically designed and experimentally validated a meta-liner supporting unanimously high-efficiency sound absorption from 800 Hz to 3200 Hz with a thickness of only 40 mm. Our work enriches the design concepts of acoustic liners and provides an efficient pathway to construct broadband meta-liners against absorption dips via the causality-governed thinnest structures, which may benefit the applications in noise-control engineering and impedance engineering. • The presented meta-liner with metal foam achieves unanimously high-efficiency sound absorption from 800 Hz to 3200 Hz via a thin structure of 40 mm. • Metal foam is utilized to modulate the intrinsic losses of the meta-liner in light of the causality-governed optimal condition. • The theoretical model enables efficient modulation of high-order couplings of complex acoustic liners and contributes to improved absorption performance. • The coupling effects among the meta-liners’ components of dominants the overall absorption performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2026毕业啦完成签到,获得积分10
2秒前
一颗小行星完成签到 ,获得积分10
4秒前
5秒前
充电宝应助ZH采纳,获得10
6秒前
乐观寻雪完成签到,获得积分10
6秒前
栗子完成签到,获得积分10
8秒前
A溶大美噶完成签到,获得积分10
9秒前
Andy完成签到,获得积分10
9秒前
你好呀发布了新的文献求助10
11秒前
11秒前
知12完成签到,获得积分10
13秒前
北国雪未消完成签到 ,获得积分10
14秒前
meng完成签到 ,获得积分10
14秒前
知行合一完成签到 ,获得积分10
16秒前
17秒前
19秒前
琉璃苣应助小申采纳,获得10
19秒前
段段完成签到,获得积分10
20秒前
CHEM_XIE完成签到,获得积分10
20秒前
十二完成签到,获得积分10
21秒前
科研通AI2S应助乔乔采纳,获得10
21秒前
能干的荆完成签到 ,获得积分10
23秒前
si发布了新的文献求助10
24秒前
lala完成签到,获得积分20
24秒前
Hollen完成签到 ,获得积分10
26秒前
bkagyin应助一招将死你采纳,获得10
27秒前
28秒前
啊啊啊lei发布了新的文献求助10
33秒前
林先生完成签到,获得积分10
34秒前
xxx完成签到 ,获得积分10
34秒前
然而。完成签到 ,获得积分10
37秒前
38秒前
英俊的铭应助个性的雨琴采纳,获得10
38秒前
大妙妙完成签到 ,获得积分10
40秒前
米夏完成签到 ,获得积分10
40秒前
42秒前
十一完成签到 ,获得积分10
42秒前
boluo666完成签到 ,获得积分10
43秒前
月光族完成签到,获得积分10
45秒前
清风完成签到 ,获得积分10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788133
关于积分的说明 7784741
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011