类胡萝卜素
DPPH
化学
生物化学
大肠杆菌
阿布茨
植物乳杆菌
食品科学
抗氧化剂
生物
乳酸
细菌
基因
遗传学
作者
Zongqin Gou,Xin Song,Lianzhong Ai,Yongjun Xia,Xiong Zhiqiang
摘要
Probiotic lactic acid bacterium Lactiplantibacillus plantarum is widely used in the dairy and other fermented food industries. L. plantarum AR113 harbors a C30 carotenoid operon crtNM based on genomic analysis, but the yield of C30 carotenoid is only 8.1 μg g-1 DCW.To improve the productivity of C30 carotenoid, crtNM from L. plantarum AR113 was cloned and reconstructed in Escherichia coli BL21(DE3). The proteins crtN and crtM were successfully expressed based on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and the carotenoid was detected using high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). In comparison with the constitutive promoter P44 , the use of the inducible T7 promoter significantly increased the carotenoid content in E. coli. The fermentation conditions were also optimized with induction by 0.5 mmol/L IPTG at 20 °C for 7 h. The yield of C30 carotenoid reached 154.5 μg g-1 DCW, which was 18-fold higher than that of L. plantarum AR113. The 2,2-diphenyl-1-picryl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6sulfonic acid (ABTS) radical scavenging capacity of C30 carotenoids synthesized by heterologous expression in E. coli was also higher than that of the antioxidant food additive butylated hydroxytoluene.Our findings suggest that E. coli has strong potential as a basic chassis for the production of C30 carotenoids from Lactiplantibacillus with high antioxidant activity. © 2022 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI