异质结
光电流
材料科学
重组
电容
离子
光电子学
降级(电信)
化学工程
纳米技术
电极
化学
电子工程
物理化学
生物化学
基因
工程类
有机化学
作者
Zhichao Hao,Ruikai Wang,Lifeng Zhang,Hongbin Sheng,Yanxin Li,Bohua Dong,Lixin Cao
标识
DOI:10.1016/j.cej.2023.143568
摘要
The more comprehensive investigation of ZnIn2S4-based heterojunction mechanism is beneficial for rationalizing the PEC performances enhancement mechanism and optimizing the application of heterojunction. Herein, Cu2S is for the first time synthesized on ZnIn2S4 as a novel co-catalyst through in-situ ion exchange techniques. The holes are extracted and stored in ZnIn2S4/Cu2S through enhanced surface states (ss) due to the decreased holes transfer resistance to ss and improved ss capacitance, which improve the carrier separation efficiencies with the effect of built-in electric filed. With the sequential deposition of NiFe-LDH, despite the inevitable carrier recombination is caused by the conflicting chemical potentials between Cu and Ni ions at the Cu2S/NiFe-LDH interface, the carrier injection efficiency is increased to 71.60% due to the exposure of more intermediate surface states (iss). The highest photocurrent density of 1.56 mA/cm2 at 1.23 V (vs. RHE) is achieved by ZnIn2S4/Cu2S/NiFe-LDH when influence of the interface carrier recombination is counteracted by the synergistic effect containing extended light absorption, the construction of ZnIn2S4/Cu2S heterojunction and changed ss, which is 10.4 times higher than that of pristine ZnIn2S4. The work provides a more comprehensive approach to investigate the mechanism for enhanced PEC performances of ZnIn2S4-based heterojunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI