Deep Image Segmentation for Defect Detection in Photo-lithography Fabrication

人工智能 自编码 计算机科学 制作 计算机视觉 深度学习 灰度 分割 图像分割 杠杆(统计) 像素 图像传感器 材料科学 模式识别(心理学) 医学 替代医学 病理
作者
Omari Paul,Sakib Abrar,R. Mu,Riadul Islam,Manar D. Samad
标识
DOI:10.1109/isqed57927.2023.10129372
摘要

Surface acoustic wave (SAW) sensors with increasingly unique and refined designed patterns are often developed using the lithographic fabrication processes. Emerging applications of SAW sensors often require novel materials, which may present uncharted fabrication outcomes. The fidelity of the SAW sensor performance is often correlated with the ability to restrict the presence of defects in post-fabrication. Therefore, it is critical to have effective means to detect the presence of defects within the SAW sensor. However, labor-intensive manual labeling is often required due to the need for precision identification and classification of surface features for increased confidence in model accuracy. One approach to automating defect detection is to leverage effective machine learning techniques to analyze and quantify defects within the SAW sensor. In this paper, we propose a machine learning approach using a deep convolutional autoencoder to segment surface features semantically. The proposed deep image autoencoder takes a grayscale input image and generates a color image segmenting the defect region in red, metallic interdigital transducing (IDT) fingers in green, and the substrate region in blue. Experimental results demonstrate promising segmentation scores in locating the defects and regions of interest for a novel SAW sensor variant. The proposed method can automate the process of localizing and measuring post-fabrication defects at the pixel level that may be missed by error-prone visual inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研完成签到,获得积分10
刚刚
LLC完成签到 ,获得积分10
刚刚
刚刚
思岩完成签到 ,获得积分10
刚刚
1秒前
小袁完成签到,获得积分10
1秒前
1秒前
中级中级完成签到,获得积分20
1秒前
1秒前
starryxm完成签到,获得积分10
1秒前
Akim应助胡天萌采纳,获得10
1秒前
徐慕源发布了新的文献求助10
1秒前
nikai完成签到,获得积分10
1秒前
杜嘟嘟发布了新的文献求助10
1秒前
科研通AI5应助岁月轮回采纳,获得10
1秒前
xiu完成签到,获得积分10
2秒前
JWang完成签到,获得积分20
2秒前
3秒前
小橙子发布了新的文献求助30
3秒前
4秒前
科研通AI5应助zino采纳,获得10
4秒前
shepherd完成签到 ,获得积分10
4秒前
Brave_1完成签到 ,获得积分10
4秒前
8R60d8应助学术小黄采纳,获得10
5秒前
南宫萍完成签到,获得积分10
5秒前
5秒前
5秒前
小苔藓发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
快乐银耳汤应助FFF采纳,获得10
6秒前
shelly0621完成签到,获得积分10
6秒前
科研通AI5应助FFF采纳,获得10
6秒前
yyang完成签到,获得积分10
6秒前
穆思柔完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
脑洞疼应助Xu采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678