Deep Image Segmentation for Defect Detection in Photo-lithography Fabrication

人工智能 自编码 计算机科学 制作 计算机视觉 深度学习 灰度 分割 图像分割 杠杆(统计) 像素 图像传感器 材料科学 模式识别(心理学) 病理 医学 替代医学
作者
Omari Paul,Sakib Abrar,R. Mu,Riadul Islam,Manar D. Samad
标识
DOI:10.1109/isqed57927.2023.10129372
摘要

Surface acoustic wave (SAW) sensors with increasingly unique and refined designed patterns are often developed using the lithographic fabrication processes. Emerging applications of SAW sensors often require novel materials, which may present uncharted fabrication outcomes. The fidelity of the SAW sensor performance is often correlated with the ability to restrict the presence of defects in post-fabrication. Therefore, it is critical to have effective means to detect the presence of defects within the SAW sensor. However, labor-intensive manual labeling is often required due to the need for precision identification and classification of surface features for increased confidence in model accuracy. One approach to automating defect detection is to leverage effective machine learning techniques to analyze and quantify defects within the SAW sensor. In this paper, we propose a machine learning approach using a deep convolutional autoencoder to segment surface features semantically. The proposed deep image autoencoder takes a grayscale input image and generates a color image segmenting the defect region in red, metallic interdigital transducing (IDT) fingers in green, and the substrate region in blue. Experimental results demonstrate promising segmentation scores in locating the defects and regions of interest for a novel SAW sensor variant. The proposed method can automate the process of localizing and measuring post-fabrication defects at the pixel level that may be missed by error-prone visual inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助五一采纳,获得10
1秒前
帕尼灬尼发布了新的文献求助10
2秒前
zunzun完成签到,获得积分10
3秒前
斜阳完成签到 ,获得积分10
4秒前
lily完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
虚幻的曼冬完成签到 ,获得积分10
6秒前
热心市民小红花应助kk采纳,获得20
7秒前
斜阳关注了科研通微信公众号
7秒前
小木木发布了新的文献求助10
7秒前
小巧满天完成签到 ,获得积分10
8秒前
8秒前
今天也要开心Y完成签到,获得积分10
8秒前
9秒前
9秒前
神奇海螺完成签到 ,获得积分10
10秒前
牛肉面发布了新的文献求助10
10秒前
10秒前
乐观忆之完成签到,获得积分10
10秒前
scm应助甜心糖采纳,获得50
11秒前
帕尼灬尼完成签到,获得积分10
11秒前
小羽完成签到,获得积分10
12秒前
初初见你完成签到 ,获得积分10
12秒前
FF完成签到,获得积分10
13秒前
djiwisksk66应助Star1983采纳,获得10
14秒前
kingwill应助木虫采纳,获得20
14秒前
14秒前
bai发布了新的文献求助10
14秒前
卡斯帕良完成签到,获得积分10
15秒前
15秒前
端庄的梦山完成签到,获得积分10
15秒前
彭于晏应助Cody采纳,获得10
15秒前
16秒前
lalala发布了新的文献求助10
17秒前
彭于晏应助英勇秀采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230