A Lightweight Detection Algorithm for Unmanned Surface Vehicles Based on Multi-Scale Feature Fusion

计算机科学 算法 架空(工程) 目标检测 卷积(计算机科学) 残余物 人工智能 特征(语言学) 特征提取 计算复杂性理论 外推法 模式识别(心理学) 计算机视觉 人工神经网络 数学 哲学 数学分析 操作系统 语言学
作者
Lei Zhang,Xiang DU,Renran Zhang,Qian Zhang
标识
DOI:10.20944/preprints202306.0780.v1
摘要

In response to reducing the energy cost of unmanned surface vehicles (USVs) while overcoming the low accuracy problem in surface target detection, a lightweight detection algorithm with multi-scale feature fusion is proposed. Based on the popular one-stage lightweight Yolov7-tiny target detection model, a lightweight extraction module is designed first by introducing the multiscale residual module to reduce the number of parameters and computational complexity while improving accuracy. The Mish and SiLU activation functions are used to enhance network feature extraction. Second, the path aggregation network employs coordinate convolution to strengthen spatial information perception. Finally, the dynamic head, which is based on the at-tention mechanism, improves the representation ability of object detection heads without any computational overhead. According to the experimental findings, the proposed model has 22.1% fewer parameters than the original model, 15% fewer GFLOPs, a 6.2% improvement in mAP@0.5, a 4.3% rise in mAP@0.5:0.95, and it satisfies the real-time criteria. According to the research, the suggested lightweight water surface detection approach includes a lighter model, a simpler computational architecture, more accuracy, and a wide range of generalizability. It performs bet-ter in a variety of difficult water surface circumstances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RY完成签到,获得积分10
1秒前
无限的珠完成签到,获得积分10
1秒前
无奈冥完成签到,获得积分10
1秒前
今后应助Justin采纳,获得10
2秒前
2秒前
ding应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
3秒前
pluto应助科研通管家采纳,获得10
3秒前
卡卡西应助科研通管家采纳,获得30
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
小胖完成签到 ,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
yookia应助科研通管家采纳,获得10
3秒前
LYY发布了新的文献求助10
3秒前
t通应助科研通管家采纳,获得10
3秒前
卡卡西应助科研通管家采纳,获得30
3秒前
5秒前
慕青应助博修采纳,获得30
6秒前
汕头凯奇发布了新的文献求助10
6秒前
binshier完成签到,获得积分10
6秒前
8秒前
df完成签到 ,获得积分10
9秒前
卡酷发布了新的文献求助10
9秒前
11秒前
果实发布了新的文献求助10
11秒前
14秒前
15秒前
熊i发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
18秒前
请假了发布了新的文献求助10
20秒前
lalala发布了新的文献求助10
20秒前
传奇3应助天真忆文采纳,获得10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149