计算机科学
算法
架空(工程)
目标检测
卷积(计算机科学)
残余物
人工智能
特征(语言学)
特征提取
计算复杂性理论
外推法
模式识别(心理学)
计算机视觉
人工神经网络
数学
哲学
数学分析
操作系统
语言学
作者
Lei Zhang,Xiang DU,Renran Zhang,Qian Zhang
标识
DOI:10.20944/preprints202306.0780.v1
摘要
In response to reducing the energy cost of unmanned surface vehicles (USVs) while overcoming the low accuracy problem in surface target detection, a lightweight detection algorithm with multi-scale feature fusion is proposed. Based on the popular one-stage lightweight Yolov7-tiny target detection model, a lightweight extraction module is designed first by introducing the multiscale residual module to reduce the number of parameters and computational complexity while improving accuracy. The Mish and SiLU activation functions are used to enhance network feature extraction. Second, the path aggregation network employs coordinate convolution to strengthen spatial information perception. Finally, the dynamic head, which is based on the at-tention mechanism, improves the representation ability of object detection heads without any computational overhead. According to the experimental findings, the proposed model has 22.1% fewer parameters than the original model, 15% fewer GFLOPs, a 6.2% improvement in mAP@0.5, a 4.3% rise in mAP@0.5:0.95, and it satisfies the real-time criteria. According to the research, the suggested lightweight water surface detection approach includes a lighter model, a simpler computational architecture, more accuracy, and a wide range of generalizability. It performs bet-ter in a variety of difficult water surface circumstances.
科研通智能强力驱动
Strongly Powered by AbleSci AI