SSG-Net: A robust network for adaptive multi-source image registration based on SuperGlue

计算机科学 人工智能 计算机视觉 图像配准 视差 特征(语言学) 方案(数学) 图像(数学) 模式识别(心理学) 数学 数学分析 哲学 语言学
作者
Kewei Liu,Zhenbo Ren,Xiaoyan Wu,Jianglei Di,Jiaye Zhao
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:140: 104128-104128 被引量:5
标识
DOI:10.1016/j.dsp.2023.104128
摘要

Multi-source image registration is a complicated but essential processing task in various vision problems, such as image fusion and object detection. Conventional methods are only capable of handling images with negligible parallax and near-infinite sight distance, such as remote sensing images. However, when the parallax between multiple images is significant, the lighting conditions are poor, or there is significant interference between the target and foreground, the registration performance can dramatically degrade. To address these challenges associated with image acquisition, in this paper, we propose a novel and robust registration method for multimodal images by utilizing an adaptive training scheme. The proposed method begins by detecting basic feature points and generating an initial coarse registration result using the SuperPoint network and the SuperGlue network. Optimal registration points are suitably determined using the DEGENSAC algorithm with a reasonable threshold. Abundant experimental results and quantitative comparisons demonstrate that our proposed scheme achieves robust and state-of-the-art registration performance for multimodal images, even complicated imaging scenarios. Additionally, for the first time to the best of our knowledge, we experimentally determine an optimal selection scheme of the target image for registration, providing valuable insights for registration tasks involving more than two images in a practical sense.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
体贴的立果完成签到,获得积分10
1秒前
SY发布了新的文献求助20
1秒前
1秒前
CNS漏网之鱼完成签到,获得积分10
1秒前
JMchiefEditor完成签到,获得积分10
2秒前
木火灰发布了新的文献求助20
3秒前
MOMOTG完成签到,获得积分10
3秒前
今后应助xx采纳,获得10
3秒前
TheMonster完成签到,获得积分10
4秒前
乐观稀完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
科研通AI6.1应助冷傲书萱采纳,获得10
4秒前
4秒前
4秒前
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
闪闪孤风应助科研通管家采纳,获得10
5秒前
5秒前
蓝鲸使徒应助科研通管家采纳,获得20
5秒前
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
oxygen发布了新的文献求助10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
爱搬玉米发布了新的文献求助10
5秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609