SSG-Net: A robust network for adaptive multi-source image registration based on SuperGlue

计算机科学 人工智能 计算机视觉 图像配准 视差 特征(语言学) 方案(数学) 图像(数学) 模式识别(心理学) 数学 数学分析 哲学 语言学
作者
Kewei Liu,Zhenbo Ren,Xiaoyan Wu,Jianglei Di,Jiaye Zhao
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:140: 104128-104128 被引量:5
标识
DOI:10.1016/j.dsp.2023.104128
摘要

Multi-source image registration is a complicated but essential processing task in various vision problems, such as image fusion and object detection. Conventional methods are only capable of handling images with negligible parallax and near-infinite sight distance, such as remote sensing images. However, when the parallax between multiple images is significant, the lighting conditions are poor, or there is significant interference between the target and foreground, the registration performance can dramatically degrade. To address these challenges associated with image acquisition, in this paper, we propose a novel and robust registration method for multimodal images by utilizing an adaptive training scheme. The proposed method begins by detecting basic feature points and generating an initial coarse registration result using the SuperPoint network and the SuperGlue network. Optimal registration points are suitably determined using the DEGENSAC algorithm with a reasonable threshold. Abundant experimental results and quantitative comparisons demonstrate that our proposed scheme achieves robust and state-of-the-art registration performance for multimodal images, even complicated imaging scenarios. Additionally, for the first time to the best of our knowledge, we experimentally determine an optimal selection scheme of the target image for registration, providing valuable insights for registration tasks involving more than two images in a practical sense.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助王哲采纳,获得10
刚刚
1秒前
1秒前
lonely发布了新的文献求助10
1秒前
科研通AI6应助聪明紫山采纳,获得10
2秒前
icanccwhite发布了新的文献求助10
2秒前
yangph完成签到,获得积分10
2秒前
在水一方应助114555采纳,获得10
6秒前
6秒前
6秒前
fzh完成签到,获得积分10
6秒前
soiiixi发布了新的文献求助10
7秒前
应绝施发布了新的文献求助10
7秒前
7秒前
8秒前
icanccwhite完成签到,获得积分10
8秒前
shanshan发布了新的文献求助10
10秒前
qibo完成签到,获得积分10
10秒前
lily发布了新的文献求助10
11秒前
12秒前
脑洞疼应助无语的绿真采纳,获得10
12秒前
张建凯发布了新的文献求助10
12秒前
小燕子完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
科目三应助温柔初珍采纳,获得10
15秒前
15秒前
研友_VZG7GZ应助仁爱小凝采纳,获得10
16秒前
CodeCraft应助zhiren采纳,获得10
16秒前
小超完成签到,获得积分10
17秒前
17秒前
lynn_zhang发布了新的文献求助10
18秒前
18秒前
114555发布了新的文献求助10
19秒前
小燕子发布了新的文献求助10
19秒前
66发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
搜集达人应助zbl1314zbl采纳,获得10
20秒前
康康完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596