SSG-Net: A robust network for adaptive multi-source image registration based on SuperGlue

计算机科学 人工智能 计算机视觉 图像配准 视差 特征(语言学) 方案(数学) 图像(数学) 模式识别(心理学) 数学 数学分析 哲学 语言学
作者
Kewei Liu,Zhenbo Ren,Xiaoyan Wu,Jianglei Di,Jiaye Zhao
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:140: 104128-104128 被引量:5
标识
DOI:10.1016/j.dsp.2023.104128
摘要

Multi-source image registration is a complicated but essential processing task in various vision problems, such as image fusion and object detection. Conventional methods are only capable of handling images with negligible parallax and near-infinite sight distance, such as remote sensing images. However, when the parallax between multiple images is significant, the lighting conditions are poor, or there is significant interference between the target and foreground, the registration performance can dramatically degrade. To address these challenges associated with image acquisition, in this paper, we propose a novel and robust registration method for multimodal images by utilizing an adaptive training scheme. The proposed method begins by detecting basic feature points and generating an initial coarse registration result using the SuperPoint network and the SuperGlue network. Optimal registration points are suitably determined using the DEGENSAC algorithm with a reasonable threshold. Abundant experimental results and quantitative comparisons demonstrate that our proposed scheme achieves robust and state-of-the-art registration performance for multimodal images, even complicated imaging scenarios. Additionally, for the first time to the best of our knowledge, we experimentally determine an optimal selection scheme of the target image for registration, providing valuable insights for registration tasks involving more than two images in a practical sense.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nanshou发布了新的文献求助10
1秒前
小龚小龚发布了新的文献求助10
1秒前
1秒前
简单的藏红花完成签到,获得积分10
1秒前
panyubo完成签到,获得积分20
2秒前
TANG发布了新的文献求助10
3秒前
可靠F发布了新的文献求助10
4秒前
小鱼完成签到,获得积分10
5秒前
天真依玉完成签到,获得积分10
5秒前
yjh发布了新的文献求助10
5秒前
6秒前
熊猫之歌完成签到,获得积分10
6秒前
6秒前
6秒前
现代蛋挞完成签到,获得积分10
7秒前
等待兔子完成签到,获得积分20
7秒前
9秒前
10秒前
11秒前
11秒前
12秒前
13秒前
田字格发布了新的文献求助10
13秒前
13秒前
luke发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
pgg147852发布了新的文献求助30
14秒前
深情海秋完成签到,获得积分10
15秒前
16秒前
17秒前
caiia完成签到,获得积分10
17秒前
YoKo完成签到,获得积分10
18秒前
霜降应助静静采纳,获得60
18秒前
今后应助可靠F采纳,获得10
18秒前
19秒前
彭于晏应助简单的静枫采纳,获得30
20秒前
21秒前
luke完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646