SSG-Net: A robust network for adaptive multi-source image registration based on SuperGlue

计算机科学 人工智能 计算机视觉 图像配准 视差 特征(语言学) 方案(数学) 图像(数学) 模式识别(心理学) 数学 数学分析 哲学 语言学
作者
Kewei Liu,Zhenbo Ren,Xiaoyan Wu,Jianglei Di,Jiaye Zhao
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:140: 104128-104128 被引量:5
标识
DOI:10.1016/j.dsp.2023.104128
摘要

Multi-source image registration is a complicated but essential processing task in various vision problems, such as image fusion and object detection. Conventional methods are only capable of handling images with negligible parallax and near-infinite sight distance, such as remote sensing images. However, when the parallax between multiple images is significant, the lighting conditions are poor, or there is significant interference between the target and foreground, the registration performance can dramatically degrade. To address these challenges associated with image acquisition, in this paper, we propose a novel and robust registration method for multimodal images by utilizing an adaptive training scheme. The proposed method begins by detecting basic feature points and generating an initial coarse registration result using the SuperPoint network and the SuperGlue network. Optimal registration points are suitably determined using the DEGENSAC algorithm with a reasonable threshold. Abundant experimental results and quantitative comparisons demonstrate that our proposed scheme achieves robust and state-of-the-art registration performance for multimodal images, even complicated imaging scenarios. Additionally, for the first time to the best of our knowledge, we experimentally determine an optimal selection scheme of the target image for registration, providing valuable insights for registration tasks involving more than two images in a practical sense.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
benbengouj完成签到,获得积分10
1秒前
wh完成签到,获得积分10
1秒前
小落看不完完成签到 ,获得积分10
1秒前
大个应助linlinWang采纳,获得10
2秒前
邓佳鑫Alan应助懒人采纳,获得10
2秒前
Disguise完成签到 ,获得积分10
2秒前
日月小完成签到,获得积分10
2秒前
A1youWe发布了新的文献求助10
2秒前
diu完成签到,获得积分10
2秒前
风清扬发布了新的文献求助10
3秒前
平淡访冬完成签到,获得积分10
3秒前
柴六斤发布了新的文献求助10
3秒前
啊就是地方就啊都是完成签到,获得积分10
3秒前
4秒前
4秒前
爱听歌的夏烟完成签到,获得积分10
4秒前
5秒前
堪雅寒完成签到,获得积分10
5秒前
spring079完成签到,获得积分10
5秒前
5秒前
linliqing完成签到,获得积分10
5秒前
5秒前
JamesPei应助happiness采纳,获得10
5秒前
flying蝈蝈完成签到,获得积分10
5秒前
vvvvvv完成签到,获得积分10
6秒前
6秒前
热心乐驹完成签到,获得积分10
7秒前
念念完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
123study0完成签到,获得积分10
8秒前
锂氧完成签到,获得积分10
8秒前
曼曼发布了新的文献求助10
9秒前
9秒前
FashionBoy应助菠萝水手采纳,获得30
10秒前
Orange应助洋芋土豆丝采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439