清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

[Application of machine learning model based on XGBoost algorithm in early prediction of patients with acute severe pancreatitis].

医学 急性胰腺炎 接收机工作特性 回顾性队列研究 算法 机器学习 人工智能 儿科 内科学 数学 计算机科学
作者
Xin Gao,Jiaxi Lin,Airong Wu,Huiyuan Gu,Xiaolin Liu,Minyue Yin,Zhirun Zhou,Rufa Zhang,Chunfang Xu,Jinzhou Zhu
出处
期刊:PubMed 卷期号:35 (4): 421-426
标识
DOI:10.3760/cma.j.cn121430-20221019-00930
摘要

To establish a machine learning model based on extreme gradient boosting (XGBoost) algorithm for early prediction of severe acute pancreatitis (SAP), and explore its predictive efficiency.A retrospective cohort study was conducted. The patients with acute pancreatitis (AP) who admitted to the First Affiliated Hospital of Soochow University, the Second Affiliated Hospital of Soochow University and Changshu Hospital Affiliated to Soochow University from January 1, 2020 to December 31, 2021 were enrolled. Demography information, etiology, past history, and clinical indicators and imaging data within 48 hours of admission were collected according to the medical record system and image system, and the modified CT severity index (MCTSI), Ranson score, bedside index for severity in acute pancreatitis (BISAP) and acute pancreatitis risk score (SABP) were calculated. The data sets of the First Affiliated Hospital of Soochow University and Changshu Hospital Affiliated to Soochow University were randomly divided into training set and validation set according to 8 : 2. Based on XGBoost algorithm, the SAP prediction model was constructed on the basis of hyperparameter adjustment by 5-fold cross validation and loss function. The data set of the Second Affiliated Hospital of Soochow University was served as independent test set. The predictive efficacy of the XGBoost model was evaluated by drawing the receiver operator characteristic curve (ROC curve), and compared it with the traditional AP related severity score; variable importance ranking diagram and Shapley additive explanation (SHAP) diagram were drawn to visually explain the model.A total of 1 183 AP patients were enrolled finally, of which 129 (10.9%) developed SAP. Among the patients from the First Affiliated Hospital of Soochow University and Changshu Hospital Affiliated to Soochow University, there were 786 patients in the training set and 197 in the validation set; 200 patients from the Second Affiliated Hospital of Soochow University were used as the test set. Analysis of all three datasets showed that patients who advanced to SAP exhibited pathological manifestation such as abnormal respiratory function, coagulation function, liver and kidney function, and lipid metabolism. Based on the XGBoost algorithm, an SAP prediction model was constructed, and ROC curve analysis showed that the accuracy for prediction of SAP reached 0.830, the area under the ROC curve (AUC) was 0.927, which was significantly improved compared with the traditional scoring systems including MCTSI, Ranson, BISAP and SABP, the accuracy was 0.610, 0.690, 0.763, 0.625, and the AUC was 0.689, 0.631, 0.875, and 0.770, respectively. The feature importance analysis based on the XGBoost model showed that the top ten items ranked by the importance of model features were admission pleural effusion (0.119), albumin (Alb, 0.049), triglycerides (TG, 0.036), Ca2+ (0.034), prothrombin time (PT, 0.031), systemic inflammatory response syndrome (SIRS, 0.031), C-reactive protein (CRP, 0.031), platelet count (PLT, 0.030), lactate dehydrogenase (LDH, 0.029), and alkaline phosphatase (ALP, 0.028). The above indicators were of great significance for the XGBoost model to predict SAP. The SHAP contribution analysis based on the XGBoost model showed that the risk of SAP increased significantly when patients had pleural effusion and decreased Alb.A SAP prediction scoring system was established based on the machine automatic learning XGBoost algorithm, which can predict the SAP risk of patients within 48 hours of admission with good accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
10秒前
Puan应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
常有李完成签到,获得积分10
19秒前
36秒前
43秒前
Criminology34举报wtc求助涉嫌违规
57秒前
方白秋完成签到,获得积分0
1分钟前
1分钟前
研友_ZbP41L完成签到 ,获得积分10
1分钟前
一夜轻舟完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
香菜张完成签到,获得积分10
2分钟前
长孙归尘完成签到 ,获得积分10
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
2分钟前
wure10发布了新的文献求助20
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
Litm完成签到 ,获得积分10
3分钟前
3分钟前
热情依白应助读书的时候采纳,获得10
3分钟前
3分钟前
3分钟前
薛定谔的猫爱摸鱼完成签到,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
热情依白应助读书的时候采纳,获得10
4分钟前
4分钟前
热情依白应助读书的时候采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688201
求助须知:如何正确求助?哪些是违规求助? 5064119
关于积分的说明 15193735
捐赠科研通 4846515
什么是DOI,文献DOI怎么找? 2598888
邀请新用户注册赠送积分活动 1550981
关于科研通互助平台的介绍 1509598