Umami-BERT: An interpretable BERT-based model for umami peptides prediction

鲜味 人工智能 计算机科学 计算生物学 化学 机器学习 生物化学 生物 品味
作者
Jingcheng Zhang,Wenjing Yan,Qingchuan Zhang,Zihan Li,Li Liang,Min Zuo,Yuyu Zhang
出处
期刊:Food Research International [Elsevier]
卷期号:172: 113142-113142 被引量:12
标识
DOI:10.1016/j.foodres.2023.113142
摘要

Umami peptides have received extensive attention due to their ability to enhance flavors and provide nutritional benefits. The increasing demand for novel umami peptides and the vast number of peptides present in food call for more efficient methods to screen umami peptides, and further exploration is necessary. Therefore, the purpose of this study is to develop deep learning (DL) model to realize rapid screening of umami peptides. The Umami-BERT model was devised utilizing a novel two-stage training strategy with Bidirectional Encoder Representations from Transformers (BERT) and the inception network. In the pre-training stage, attention mechanisms were implemented on a large amount of bioactive peptides sequences to acquire high-dimensional generalized features. In the re-training stage, umami peptide prediction was carried out on UMP789 dataset, which is developed through the latest research. The model achieved the performance with an accuracy (ACC) of 93.23% and MCC of 0.78 on the balanced dataset, as well as an ACC of 95.00% and MCC of 0.85 on the unbalanced dataset. The results demonstrated that Umami-BERT could predict umami peptides directly from their amino acid sequences and exceeded the performance of other models. Furthermore, Umami-BERT enabled the analysis of attention pattern learned by Umami-BERT model. The amino acids Alanine (A), Cysteine (C), Aspartate (D), and Glutamicacid (E) were found to be the most significant contributors to umami peptides. Additionally, the patterns of summarized umami peptides involving A, C, D, and E were analyzed based on the learned attention weights. Consequently, Umami-BERT exhibited great potential in the large-scale screening of candidate peptides and offers novel insight for the further exploration of umami peptides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫熠彤完成签到,获得积分20
刚刚
在水一方应助zzzhang采纳,获得10
1秒前
番茄乌梅发布了新的文献求助10
4秒前
感谢dale转发科研通微信,获得积分50
4秒前
4秒前
5秒前
Ava应助nn采纳,获得10
7秒前
简单河马发布了新的文献求助10
7秒前
领导范儿应助gyx采纳,获得10
7秒前
7秒前
青山渐青发布了新的文献求助10
8秒前
STonebbb发布了新的文献求助10
8秒前
8秒前
SiO2完成签到 ,获得积分10
8秒前
abcdefg发布了新的文献求助10
8秒前
9秒前
9秒前
wanci应助无情的之槐采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
禹丹烟发布了新的文献求助10
11秒前
重庆发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
zzn完成签到,获得积分10
13秒前
昵称发布了新的文献求助10
13秒前
sunny完成签到,获得积分10
13秒前
13秒前
chengran完成签到,获得积分20
14秒前
哈哈Hank发布了新的文献求助10
14秒前
15秒前
lidian发布了新的文献求助30
15秒前
焦糖咸鱼完成签到,获得积分10
15秒前
15秒前
FISH发布了新的文献求助10
16秒前
16秒前
番茄乌梅完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304792
求助须知:如何正确求助?哪些是违规求助? 2938738
关于积分的说明 8489795
捐赠科研通 2613236
什么是DOI,文献DOI怎么找? 1427209
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557