细胞毒性T细胞
医学
前列腺癌
免疫系统
癌症研究
免疫疗法
肿瘤微环境
T细胞
CD8型
雄激素剥夺疗法
FOXP3型
癌症
免疫学
内科学
生物
体外
生物化学
作者
Sheng Wang,Maohua Huang,Minfeng Chen,Zhiting Sun,Yubo Jiao,Geni Ye,Jinghua Pan,Wencai Ye,Jianfu Zhao,Dongmei Zhang
标识
DOI:10.1136/jitc-2022-006381
摘要
Background Advanced or metastatic prostate cancer (PCa) is still an incurable malignancy with high lethality and a poor prognosis. Despite the remarkable success of immunotherapy against many types of cancer, most patients with PCa receive minimal benefit from current immunotherapeutic strategies, because PCa is an immune cold tumor with scarce T-cell infiltration in the tumor microenvironment. The aim of this study was to develop an effective immunotherapeutic approach for immune cold PCa tumors. Methods The therapeutic efficacy of androgen deprivation therapy (ADT) and zoledronic acid (ZA) plus thymosin α1 (Tα1) therapy was analyzed retrospectively in patients with advanced or metastatic PCa. The effects and mechanisms by which ZA and Tα1 regulated the immune functions of PCa cells and immune cells were evaluated by a PCa allograft mouse model, flow cytometric analysis, immunohistochemical and immunofluorescence staining assays, and PCR, ELISA, and Western blot analyses. Results In this study, clinical retrospective analysis revealed that ADT combined with ZA plus Tα1 improved the therapeutic outcomes of patients with PCa, which might be associated with an enhanced frequency of T cells. ZA and Tα1 treatment synergistically inhibited the growth of androgen-independent PCa allograft tumors, with increased infiltration of tumor-specific cytotoxic CD8 + T cells and enhanced tumor inflammation. Functionally, ZA and Tα1 treatment relieved immunosuppression in PCa cells, stimulated pro-inflammatory macrophages, and enhanced the cytotoxic function of T cells. Mechanistically, ZA plus Tα1 therapy blocked the MyD88/NF-κB pathway in PCa cells but activated this signaling in macrophages and T cells, altering the tumor immune landscape to suppress PCa progression. Conclusions These findings uncover a previously undefined role for ZA and Tα1 in inhibiting the disease progression of immune cold PCa tumors by enhancing antitumor immunity and pave the way for the application of ZA plus Tα1 therapy as an immunotherapeutic strategy for treating patients with immunologically unresponsive PCa.
科研通智能强力驱动
Strongly Powered by AbleSci AI