Fluorescence in situ hybridization (FISH) has been widely used to visualize target DNA sequences in fixed chromosome samples by denaturing the dsDNA to allow complementary probe hybridization, thus damaging the chromatin structure by harsh treatments. To overcome this limitation, a CRISPR/Cas9-based in situ labeling method was developed, termed CRISPR-FISH. This method is also known as RNA-guided endonuclease-in situ labeling (RGEN-ISL). Here we present different protocols for the application of CRISPR-FISH on acetic acid: ethanol or formaldehyde-fixed nuclei and chromosomes as well as tissue sections for labeling repetitive sequences in a range of plant species. In addition, methods on how immunostaining can be combined with CRISPR-FISH are provided.