Exclusive-Region-Map-Based Medium Access Control in Mobile Networks With Directional Antennas Through Deep Interference Learning

计算机科学 干扰(通信) 计算 人工智能 算法 计算机网络 频道(广播)
作者
Zhe Chu,Fei Hu,Jiamiao Zhao,Linsheng He,Elizabeth Serena Bentley,Sunil Kumar
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 1012-1024
标识
DOI:10.1109/tccn.2023.3284546
摘要

The medium access control (MAC) design in mobile networks with directional antennas is challenging due to the difficulty of defining the exact RF interference range between two neighboring directional links and the frequent changes of interference range due to node mobility. This research targets directional data reception (Rx) and transmission (Tx) coordination issues based on the computation of directional interference ranges from nearby directional links. An innovative MAC mechanism is designed with three features: (1) ER-map , i.e., the spatial expression of exclusive region (ER) model in the format of a heatmap. The ER-map helps to determine the directional interference range in typical communication scenarios. Different ER-map cases are analyzed based on the spatial layout differences for two nearby directional links. (2) Spatio-temporal ER-map evolution prediction: a Spatio-Temporal Residual Network (ST-ResNet+) model is used to describe the spatial correlations (for the ERs among neighboring links) and temporal correlations (for the ERs across different time instants) as well as the ER map evolution patterns. Such a Deep ST-ResNet+ model is used to predict the next-time ER map’s snapshot. (3) Optimized directional MAC protocol based on ER map predictions : The ST-ResNet+ prediction results are used to determine the MAC operations, such as Tx/Rx schedule arrangement in the one-hop area, sending rate adjustments, etc. Comprehensive simulations are conducted to validate the throughput efficiency for the proposed directional MAC scheme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢珠发布了新的文献求助10
1秒前
jjaigll12完成签到 ,获得积分10
1秒前
海风完成签到,获得积分10
1秒前
康康米其林完成签到,获得积分10
1秒前
Tianju完成签到,获得积分10
1秒前
zzzibart完成签到,获得积分10
3秒前
施青文完成签到,获得积分10
3秒前
自然天思完成签到,获得积分10
4秒前
personking完成签到,获得积分10
4秒前
4秒前
111发布了新的文献求助10
4秒前
看不完的文献完成签到,获得积分20
5秒前
mawenxing完成签到,获得积分10
5秒前
7秒前
充电宝应助缓慢珠采纳,获得10
8秒前
田様应助科研小白采纳,获得10
8秒前
supertkeb完成签到,获得积分10
8秒前
9秒前
kkiskk完成签到 ,获得积分10
10秒前
鲤鱼一鸣完成签到,获得积分10
10秒前
冒失的饭饭完成签到,获得积分10
10秒前
龙腾岁月完成签到 ,获得积分10
11秒前
zzz完成签到,获得积分10
11秒前
mata19完成签到,获得积分10
12秒前
yY发布了新的文献求助10
12秒前
哎呦哎完成签到,获得积分10
12秒前
小木虫完成签到,获得积分10
12秒前
ruby发布了新的文献求助10
12秒前
遇鲸还潮完成签到,获得积分10
12秒前
lyq007完成签到,获得积分10
13秒前
yuyuyu完成签到,获得积分10
13秒前
13秒前
幸福大白发布了新的文献求助10
14秒前
魔幻大有发布了新的文献求助10
14秒前
ding应助1111采纳,获得10
15秒前
杜嘟嘟完成签到,获得积分10
15秒前
瑞瑞想发财完成签到,获得积分10
15秒前
realityjunky完成签到,获得积分10
15秒前
汤雄文完成签到,获得积分10
16秒前
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249002
求助须知:如何正确求助?哪些是违规求助? 2892380
关于积分的说明 8271185
捐赠科研通 2560658
什么是DOI,文献DOI怎么找? 1389175
科研通“疑难数据库(出版商)”最低求助积分说明 651006
邀请新用户注册赠送积分活动 627869