固相萃取
检出限
萃取(化学)
石墨烯
解吸
纳米复合材料
吸附
材料科学
自来水
色谱法
化学
化学工程
纳米技术
环境工程
环境科学
有机化学
工程类
作者
Guoxin Wu,Chuanqi Zhang,Chang Liu,Xiangzi Li,Yuanyuan Cai,Meifang Wang,Deqiang Chu,Liyun Liu,Meng Tian,Zhimin Chen
标识
DOI:10.1016/j.jhazmat.2023.131788
摘要
Organothiophosphate pesticides (OPPs) are the most common water contaminants, significantly endangering human health and bringing serious public safety issues. Thus, developing effective technologies for the removal or trace detection of OPPs from water is urgent. Herein, a novel graphene-based silica-coated core-shell tubular magnetic nanocomposite (Ni@SiO2-G) was fabricated for the first time and used for the efficient magnetic solid-phase extraction (MSPE) of the OPPs chlorpyrifos, diazinon, and fenitrothion from environmental water. The experimental factors affecting extraction efficiency such as adsorbent dosage, extraction time, desorption solvent, desorption mode, desorption time, and adsorbent type were evaluated. The synthesized Ni@SiO2-G nanocomposites showed a higher preconcentration capacity than the Ni nanotubes, Ni@SiO2 nanotubes, and graphene. Under the optimized conditions, 5 mg of tubular nano-adsorbent displayed good linearity within the range of 0.1-1 μg·mL-1, low limits of detection (0.04-0.25 pg·mL-1), low limits of quantification (0.132-0.834 pg·mL-1), good reusability (n = 5; relative standard deviations between 1.46% and 9.65%), low dosage (5 mg), and low real detection concentration (< 3.0 ng·mL-1). Moreover, the possible interaction mechanism was investigated by density functional theory calculation. Results showed that Ni@SiO2-G was a potential magnetic material for the preconcentration and extraction of formed OPPs at ultra-trace levels from environmental water.
科研通智能强力驱动
Strongly Powered by AbleSci AI