Spatiotemporal reconstruction of unsteady bridge flow field via hierarchical graph neural networks with causal attention

空气动力学 流线、条纹线和路径线 计算流体力学 人工神经网络 雷诺数 计算机科学 算法 流量(数学) 加速 涡度 人工智能 物理 涡流 机械 湍流 操作系统
作者
Chenzhi Cai,Jun Xiao,Yunfeng Zou,Xuhui He
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0247905
摘要

When calculating the transient flow around a bridge structure, traditional computational fluid dynamics methods are extremely time-consuming, especially for multiparameter optimization analyses. Inspired by the development of deep graph neural networks with a mesh structure, this paper describes a spatiotemporal prediction framework for the rapid reconstruction and prediction of transient flows on large-scale unstructured grids. To ensure stability and reliability during self-supervised training, a causal self-attention mechanism is employed in the temporal model. The framework is trained and tested on a dataset containing 40 000 snapshots of bridge flow fields with Reynolds numbers ranging from 104 to 105. The relative mean square error of the model in predicting the velocity and pressure fields is found to be in the order of 10−3 and the relative error does not exceed 10%. This demonstrates that the model is capable of reconstructing high-dimensional flow field information from low-dimensional data. Furthermore, the proposed model achieves a computational speedup by two orders of magnitude compared with traditional computational fluid dynamics methods with respect to the temporal inference. To validate its ability to infer bridge aerodynamic characteristics, the model is used to predict the bridge surface pressure, aerodynamic coefficients, streamlines, and vorticity. The results demonstrate that the proposed model has reliable accuracy, representation, and stability in predicting bridge flow fields and identifying multiscale characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心外科医生完成签到,获得积分10
1秒前
深情安青应助即将高产sci采纳,获得10
1秒前
2秒前
guoguo应助阳光向上的长峥采纳,获得10
2秒前
AN发布了新的文献求助10
4秒前
失眠金鱼发布了新的文献求助30
4秒前
guoguo应助复杂的音响采纳,获得10
8秒前
lx6869发布了新的文献求助10
9秒前
10秒前
MiloYip完成签到,获得积分10
12秒前
daidai完成签到,获得积分10
12秒前
14秒前
16秒前
yyq发布了新的文献求助10
17秒前
脑洞疼应助lx6869采纳,获得10
17秒前
科研通AI2S应助daidai采纳,获得10
18秒前
wah发布了新的文献求助10
19秒前
老毕登发布了新的文献求助10
20秒前
QinY完成签到,获得积分10
20秒前
WRWRWR完成签到,获得积分20
21秒前
22秒前
李健应助QinY采纳,获得10
25秒前
25秒前
爆米花应助李米采纳,获得10
26秒前
26秒前
脾气暴躁的小兔完成签到,获得积分10
26秒前
28秒前
JamesPei应助很多事罚款采纳,获得10
29秒前
30秒前
30秒前
kkk发布了新的文献求助20
30秒前
科目三应助恋空采纳,获得10
30秒前
小静发布了新的文献求助10
30秒前
南笙发布了新的文献求助10
30秒前
无花果应助yyq采纳,获得10
31秒前
31秒前
32秒前
暗器完成签到,获得积分10
32秒前
星星怪月亮不亮完成签到,获得积分10
32秒前
34秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334899
求助须知:如何正确求助?哪些是违规求助? 2964140
关于积分的说明 8612352
捐赠科研通 2642972
什么是DOI,文献DOI怎么找? 1447124
科研通“疑难数据库(出版商)”最低求助积分说明 670541
邀请新用户注册赠送积分活动 658805