An Explorative Approach for Formulating Highly Performant, Scalable, Lithium Battery Separators

电解质 易燃液体 工艺工程 电池(电) 材料科学 锂(药物) 电化学 储能 化学工程 计算机科学 环境科学 废物管理 化学 电极 工程类 功率(物理) 医学 物理 物理化学 量子力学 内分泌学
作者
Eleonora de Santis,Antonio Rinaldi,Rodolfo Araneo,Giovanni Battista Appetecchi
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (67): 4396-4396
标识
DOI:10.1149/ma2024-02674396mtgabs
摘要

Introduction The lithium-ion technology has revolutionized the energy storage market and the demand for highly performant devices is rapidly expanding, also capable of satisfying hard/challenging operative conditions required in many technological sectors. For instance, large-scale applications (particularly, deep-water drilling devices, gas/oil industry, but also stationary power sources and automotive) require batteries able of safely operating even at high temperatures (around or above 100 °C), while maintaining acceptable performance and cycle life without significant degradation [1,2]. However, commercial Li-ion batteries (LIBs) are temperature limited as they can only occasionally overcome 50-60 °C. The presence of volatile and flammable organic electrolyte solvents can lead to a dangerous chain of events such as overpressure, cell venting, burning and explosion, with rapid cell dismantling [3]. In addition, the LiPF 6 salt (generally used in standard LIB electrolytes) is thermally unstable and, in the presence of even moisture and/or oxygen traces, is able of generating HF acid, thereby irreversibility ageing the electrochemical device and leading to cell performance decay [4-5]. In this scenario, an appealing approach for overcoming this drawback is the design of non-volatile, non-flammable, more thermally robust electrolyte formulations able of withstanding high temperatures [2]. Ionic liquids, molten salts below 100 °C (often at room temperature or below), were proposed as advanced electrolyte solvents for improving the safety and reliability of LIB devices [6] due to their appealing peculiarities (i.e., no measurable vapor pressure, marked flame retardant properties, fast ion transport properties, high chemical/electrochemical/thermal stability, good power solvent) [7]. Phosphonium-based ionic liquids are expected to exhibit higher thermal and electrochemical stability compared to those containing ammonium cations [8-12]. Experimental In the present work, the attention has been focused on the tetrabutylphosphonium (P 4444 ) + cation, which has been selected because the steric hindrance and the symmetry of its structure are expected of allowing high thermal and electrochemical stability (with respect to the reduction process) [8-12], although these factors do not favor the ion transport properties and the low melting temperature. The (P 4444 ) + cation, commercially available as bromine salt (easily handled and purified), was coupled with selected anions of the per(fluoroalkylsulfonyl)imide family for their appealing thermal/electrochemical stability and good transport properties [9,13]. The (P 4444 ) + -based ionic liquids (PILs) were synthesized and purified according to an eco-friendly procedure, reported in detail elsewhere [7], which requires water as the only processing solvent. The quality control of the PIL materials was checked in terms of NMR, FT-IR, EDX and UV-Vis analysis where the physicochemical properties were studied through DSC and TGA techniques. The electrochemical characteristics were also examined in the presence of the LiTFSI salt (PIL:LiTFSI mole ratio = 4:1) in terms of ionic conductivity and electrochemical stability. Results The PIL materials were successfully synthesized with purity level overcoming 99.9 wt.%, i.e., in particular, the halide, moisture and lithium content was found below 5 ppm. The PIL electrolytes have exhibited very good thermal robustness (well above 250 °C) in conjunction with wide electrochemical stability window (close to 4.8 V vs the Li + /Li° redox couple). Fast ion transport properties (largely exceeding 10 -3 S cm -1 ) were recorded at temperatures ranging from 80-120 °C. These results make the (P 4444 ) + -based electrolytes rather appealing for high temperature lithium battery systems. The results are here presented and discussed. References [1] G.-T. Kim, et al. , Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries, Membranes 2018, 8, 41 [2] D. R. Wright, et al. , Review on high temperature secondary Li-ion batteries, Science Direct, Energy Procedia 151 (2018) 174–181. [3] S. Shahid, et al. , Energy Conversion and Management: X 16 (2022). [4] S. Li, et al. , Electrochim. Acta 129 (2014). [5] P. Murmann, et al. , Electrochim Acta 114 (2013). [6] S. Passerini, et al. , Lithium Polymer Batteries Based on Ionic Liquids in Polymers for Energy Storage and Conversion , Vikas Mittal editor, John Wiley and Scriverner Publishing, USA, 2013 [7] M. Montanino, et al. ,Electrochim. Acta 96 (2013) 124-133. [8] K.J. Fraser, et al. , Aust. J. Chem. 62 (2009) 309-321. [9] K. Tsunashima, et al. , Electrochem. Commun. 9 (2007) 2353-2358. [10] P.J. Griffin, et al. , J. Chem. Phys. 142 (2015) 084501. [11] P.J. Carvalho, et al., J. Chem. Phys. 140 (2014) 064505. [12] F. Chen, et al. , J. Chem. Phys. 148 (2018) 193813-193819. [13] G.B. Appetecchi, et al., Electrochim. Acta 56 (2011) 1300-1307. Acknowledgements The authors would like to acknowledge the financial support from the European Battery Innovation (EuBatIn) – IPCEI Project. E.D.S thanks the Electrical, Materials and Nanotechnology Engineering Doctoral Course of La Sapienza University of Rome for the financial support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋弋完成签到,获得积分10
1秒前
无名欧文完成签到,获得积分10
2秒前
4秒前
虚心海燕发布了新的文献求助10
4秒前
黄啊涛关注了科研通微信公众号
4秒前
4秒前
JamesPei应助Rainbow采纳,获得10
5秒前
一只科研狗完成签到,获得积分10
5秒前
pp0118完成签到 ,获得积分10
5秒前
余呀余完成签到 ,获得积分10
6秒前
7秒前
善良易文关注了科研通微信公众号
7秒前
7秒前
瑶一瑶发布了新的文献求助10
8秒前
yhy完成签到,获得积分10
8秒前
纯真雁菱完成签到,获得积分10
8秒前
sun发布了新的文献求助10
8秒前
w.h完成签到,获得积分10
9秒前
9秒前
Schmoo发布了新的文献求助10
9秒前
赘婿应助Zxc采纳,获得10
9秒前
明理雨筠完成签到,获得积分10
10秒前
Ava应助Chen采纳,获得10
11秒前
11秒前
11秒前
Xing发布了新的文献求助10
11秒前
w.h发布了新的文献求助10
12秒前
搜集达人应助狼来了aas采纳,获得10
13秒前
14秒前
点点发布了新的文献求助10
14秒前
16秒前
16秒前
blingbling完成签到,获得积分10
16秒前
16秒前
黄啊涛发布了新的文献求助10
16秒前
16秒前
嘻嘻发布了新的文献求助30
16秒前
17秒前
17秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849