免疫疗法
肿瘤微环境
癌症研究
医学
肿瘤进展
肿瘤细胞
免疫学
免疫系统
癌症
内科学
作者
Haiyan Xu,Shengbai Xue,Yang Sun,Jingyu Ma,Shumin Li,Yanling Wang,Tiebo Mao,Weiyu Ge,Yue Ming,Daiyuan Shentu,Wenxin Lu,Yongchao Wang,Jiong Hu,Jiujie Cui,Xiaofei Zhang,Li Cai,Yu Wang,Liwei Wang
标识
DOI:10.1136/jitc-2024-010029
摘要
Background To date, a growing body of evidence suggests that unfolded protein response (UPR) sensors play a vital role in carcinogenesis. However, it remains unclear whether they are involved in pancreatic ductal adenocarcinoma (PDAC) and how they relate to clinical outcomes. This study aims to investigate the biological function and mechanism of how a novel UPR sensor, CREB3L1 works in PDAC and further evaluate its clinical application prospect. Methods We tested UPR signaling including CREB3L1 in Thapsigargin-treated PDAC cells. Subsequently, we defined CREB3L1 expression and further analyzed its expression with clinical characteristics in PDAC. Then, we established gene-modified cells to determine whether CREB3L1 functions in cell proliferation and migration capacity. Besides, we constructed subcutaneously and orthotopically transplanted mice models to verify their progrowing function and pulmonary metastasis models to prove their proinvasion role. What’s more, RNAseq, qPCR, Western blotting, immunohistochemistry and multicolor flow cytometry experiments were used to explore the mechanism of how CREB3L1 worked in PDAC. Lastly, CREB3L1 expression correlation with PDAC immunotherapy outcome and immune cell signatures were explored in the patients with advanced PDAC who received PD-1 antibody therapy. Results We first confirmed CREB3L1 could be induced by endoplasmic reticulum stressor and found its aberrant activation was associated with poorer overall survival in PDAC patients indicating the protumor function of the new UPR sensor. Functionally, we confirmed CREB3L1 contributing to PDAC malignant progression including growth and metastasis by multiple in in vitro and in vivo models. Mechanistically, CREB3L1 upregulated COL3A1 and promoted dense stroma formation for facilitating PDAC and knocking down COL3A1 disrupted CREB3L1 protumor function. Furthermore, CREB3L1-induced TAM polarization toward an M2 phenotype and reduced the infiltration of CD8 + T cells. Clinically, CREB3L1 correlated with immune cell signatures as well as immune checkpoint blockade (ICB) treatment response and outcome that CREB3L1aberrant activation indicated poorer efficacy and worse prognosis than the low in PDAC which might empower clinical decision. Conclusions Collectively, this study revealed CREB3L1 facilitated PDAC progression, shaped an immune exclude tumor microenvironment and distinguished therapy response and outcome of ICB therapy indicating CREB3L1 could be a promising novel molecular target and biomarker for PDAC treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI