Novel clinical trial designs emerging from the molecular reclassification of cancer

临床试验 医学 精密医学 个性化医疗 生物标志物发现 生物标志物 基因组学 个性化 药物开发 疾病 生物信息学 计算生物学 药品 蛋白质组学 内科学 病理 计算机科学 药理学 基因组 生物 生物化学 万维网 基因
作者
Mina Nikanjam,Shumei Kato,Teresa Allen,Jason K. Sicklick,Razelle Kurzrock
出处
期刊:CA: A Cancer Journal for Clinicians [Wiley]
标识
DOI:10.3322/caac.21880
摘要

Abstract Next‐generation sequencing has revealed the disruptive reality that advanced/metastatic cancers have complex and individually distinct genomic landscapes, necessitating a rethinking of treatment strategies and clinical trial designs. Indeed, the molecular reclassification of cancer suggests that it is the molecular underpinnings of the disease, rather than the tissue of origin, that mostly drives outcomes. Consequently, oncology clinical trials have evolved from standard phase 1, 2, and 3 tissue‐specific studies; to tissue‐specific, biomarker‐driven trials; to tissue‐agnostic trials untethered from histology (all drug‐centered designs ); and, ultimately, to patient‐centered , N‐of‐1 precision medicine studies in which each patient receives a personalized, biomarker‐matched therapy/combination of drugs. Innovative technologies beyond genomics, including those that address transcriptomics, immunomics, proteomics, functional impact, epigenetic changes, and metabolomics, are enabling further refinement and customization of therapy. Decentralized studies have the potential to improve access to trials and precision medicine approaches for underserved minorities. Evaluation of real‐world data, assessment of patient‐reported outcomes, use of registry protocols, interrogation of exceptional responders, and exploitation of synthetic arms have all contributed to personalized therapeutic approaches. With greater than 1 × 10 12 potential patterns of genomic alterations and greater than 4.5 million possible three‐drug combinations, the deployment of artificial intelligence/machine learning may be necessary for the optimization of individual therapy and, in the near future, also may permit the discovery of new treatments in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕青应助科研通管家采纳,获得10
刚刚
猪猪hero应助科研通管家采纳,获得10
刚刚
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
1秒前
丰知然应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得80
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
劲秉应助科研通管家采纳,获得10
1秒前
hnl应助科研通管家采纳,获得20
1秒前
1秒前
期刊应助科研通管家采纳,获得10
1秒前
劲秉应助科研通管家采纳,获得10
1秒前
丰知然应助科研通管家采纳,获得10
1秒前
丰知然应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得30
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
2秒前
静然完成签到,获得积分10
2秒前
羔羊发布了新的文献求助10
3秒前
小山隹完成签到,获得积分10
3秒前
whs完成签到 ,获得积分10
4秒前
薛洁洁的小糖应助HJJHJH采纳,获得30
4秒前
wasiwan完成签到,获得积分10
5秒前
5秒前
5秒前
似水流年发布了新的文献求助10
6秒前
6秒前
6秒前
元羞花发布了新的文献求助10
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461678
求助须知:如何正确求助?哪些是违规求助? 3055353
关于积分的说明 9047590
捐赠科研通 2745170
什么是DOI,文献DOI怎么找? 1506011
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695380