已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Unified Prompt-aware Framework for Personalized Search and Explanation Generation

计算机科学 数据科学
作者
Haobo Zhang,Qiannan Zhu,Zhicheng Dou
出处
期刊:ACM Transactions on Information Systems
标识
DOI:10.1145/3716131
摘要

Product search is crucial for users to find and purchase products they need. Personalized product search, which models users’ search intent and provides tailored results, has become a prominent research problem in industry and academia. Recent studies often leverage knowledge graphs (KGs) to improve search performance and generate explanations for search results. However, existing KG-based methods treat search and explanation tasks separately and explore paths in KGs as explanations, creating a gap between search results and generated explanations. Also, path-formed explanations in KGs are not flexible enough to build correlations with the user’s current query. To address these challenges, we propose P-PEG, a unified prompt-aware framework for personalized product search and explanation generation. P-PEG leverages a pre-trained language model (PLM) and search signal to enhance the generation of user-understandable explanations. We introduce a prompt learning technique and design prompt generators for search and explanation generation tasks based on a fixed PLM. By incorporating search results in explanation-based prompts, we bridge the gap between search results and explanations, facilitating better interaction. Additionally, we utilize the user’s current query, historical search log, and KGs to personalize the explanations and inject task knowledge into PLM. Experimental results show that P-PEG outperforms existing methods in the explanation generation task of the three datasets and the search task of the Electronics dataset, and achieves comparable performance in the search task of the Cellphones & Accessories and CD & Vinyl datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seven完成签到,获得积分10
刚刚
刚刚
土归土完成签到,获得积分10
5秒前
seven发布了新的文献求助10
6秒前
7秒前
xiantao完成签到 ,获得积分10
8秒前
Hello应助xkaZ采纳,获得10
9秒前
狗子发布了新的文献求助10
9秒前
Gigi发布了新的文献求助10
10秒前
迷路羽毛发布了新的文献求助10
11秒前
周周发布了新的文献求助10
12秒前
FashionBoy应助dui采纳,获得10
13秒前
李健的粉丝团团长应助dui采纳,获得10
13秒前
脑洞疼应助dui采纳,获得10
13秒前
辛夷应助dui采纳,获得10
13秒前
田様应助dui采纳,获得10
13秒前
英姑应助dui采纳,获得10
14秒前
脑洞疼应助dui采纳,获得10
14秒前
丘比特应助dui采纳,获得10
14秒前
田様应助dui采纳,获得10
14秒前
研友_VZG7GZ应助dui采纳,获得10
14秒前
16秒前
17秒前
mouxq发布了新的文献求助10
17秒前
选兵发布了新的文献求助10
17秒前
小尾巴发布了新的文献求助10
18秒前
shuanglin发布了新的文献求助10
19秒前
赘婿应助科研通管家采纳,获得10
20秒前
壮观问寒应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
20秒前
MchemG应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得30
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得30
20秒前
所所应助科研通管家采纳,获得100
20秒前
llll应助科研通管家采纳,获得20
20秒前
20秒前
风中亦玉发布了新的文献求助10
22秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422633
求助须知:如何正确求助?哪些是违规求助? 3022993
关于积分的说明 8903137
捐赠科研通 2710447
什么是DOI,文献DOI怎么找? 1486443
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682286