AI-driven inverse design of materials: Past, present and future

计算机科学 生成语法 反向 管理科学 人工智能 数学 工程类 几何学
作者
Xu Han,Xin-De Wang,M. Xu,Feng Zhen,Baozhen Yao,Peng-Jie Guo,Zong-xian Gao,Zhong-Yi Lu
出处
期刊:Chinese Physics Letters [IOP Publishing]
标识
DOI:10.1088/0256-307x/42/2/027403
摘要

Abstract The discovery of advanced materials is the cornerstone of human technological development and progress. The structures of materials and their corresponding properties are essentially the result of a complex interplay of multiple degrees of freedom such as lattice, charge, spin, symmetry, and topology. This poses significant challenges for the inverse design methods of materials. Humans have long explored new materials through a large number of experiments and proposed corresponding theoretical systems to predict new material properties and structures. With the improvement of computational power, researchers have gradually developed various electronic structure calculation methods, such as the density functional theory and high-throughput computational methods. Recently, the rapid development of artificial intelligence technology in the field of computer science has enabled the effective characterization of the implicit association between material properties and structures, thus opening up an efficient paradigm for the inverse design of functional materials. A significant progress has been made in inverse design of materials based on generative and discriminative models, attracting widespread attention from researchers. Considering this rapid technological progress, in this survey, we look back on the latest advancements in AI-driven inverse design of materials by introducing the background, key findings, and mainstream technological development routes. In addition, we summarize the remaining issues for future directions. This survey provides the latest overview of AI-driven inverse design of materials, which can serve as a useful resource for researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳尔容完成签到,获得积分10
刚刚
刚刚
郑1完成签到 ,获得积分10
1秒前
moji完成签到,获得积分10
2秒前
3秒前
星辰大海应助Stormi采纳,获得10
3秒前
小马甲应助捏个小雪团采纳,获得10
3秒前
大白不白完成签到,获得积分10
3秒前
无心的凡柔完成签到,获得积分10
5秒前
hyper_zhou发布了新的文献求助10
5秒前
FashionBoy应助崛宸采纳,获得10
6秒前
黎明的第一道曙光完成签到 ,获得积分0
8秒前
moji发布了新的文献求助10
8秒前
一切顺利完成签到,获得积分10
10秒前
cc给cc的求助进行了留言
11秒前
酷波er应助CDI和LIB采纳,获得10
11秒前
CipherSage应助VPN不好用采纳,获得10
11秒前
11秒前
激情的又菡完成签到,获得积分10
11秒前
11秒前
11秒前
pluto应助Wcc采纳,获得30
12秒前
善良皮皮虾完成签到,获得积分20
12秒前
qiqiqi完成签到,获得积分10
13秒前
科研通AI2S应助务实的乐珍采纳,获得10
14秒前
15秒前
16秒前
Ammr发布了新的文献求助10
16秒前
17秒前
QXR完成签到,获得积分10
17秒前
hyper_zhou完成签到,获得积分10
17秒前
17秒前
烟花应助Lemuel采纳,获得10
17秒前
Owen应助善良皮皮虾采纳,获得10
17秒前
17秒前
17秒前
lucky花生发布了新的文献求助50
17秒前
艾莎莎5114完成签到,获得积分10
18秒前
我我我发布了新的文献求助10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522849
求助须知:如何正确求助?哪些是违规求助? 3103786
关于积分的说明 9267447
捐赠科研通 2800458
什么是DOI,文献DOI怎么找? 1536934
邀请新用户注册赠送积分活动 715309
科研通“疑难数据库(出版商)”最低求助积分说明 708693