已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Neural correlates of sensorimotor adaptation: thalamic contributions to learning from sensory prediction error

感觉系统 神经适应 意识的神经相关物 适应(眼睛) 心理学 神经科学 认知心理学 认知
作者
Shirin Mahdavi,Axel Lindner,Carsten Schmidt‐Samoa,Anna-Lena Müsch,Peter Dechent,Melanie Wilke
出处
期刊:NeuroImage [Elsevier BV]
卷期号:303: 120927-120927 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120927
摘要

Understanding the neural mechanism of sensorimotor adaptation is essential to reveal how the brain learns from errors, a process driven by sensory prediction errors. While the previous literature has focused on cortical and cerebellar changes, the involvement of the thalamus has received less attention. This functional magnetic resonance imaging study aims to explore the neural substrates of learning from sensory prediction errors with an additional focus on the thalamus. Thirty participants adapted their goal-directed reaches to visual feedback rotations introduced in a step-wise manner, while reporting their predicted visual consequences of their movements intermittently. We found that adaptation initially engaged the cerebellum and fronto-parietal cortical regions, which persisted as adaptation progressed. By the end of adaptation, additional regions within the fronto-parietal cortex and medial pulvinar of the thalamus were recruited. Another finding was the involvement of bilateral medial dorsal nuclei, which showed a positive correlation with the level of motor adaptation. Notably, the gradual shift in the predicted hand movement consequences was associated with activity in the cerebellum, motor cortex and thalamus (ventral lateral, medial dorsal, and medial pulvinar). Our study presents clear evidence for an involvement of the thalamus, both classical 'motor' and higher-order nuclei, in error-based motor learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
neal完成签到,获得积分10
刚刚
坚定背包发布了新的文献求助10
3秒前
SCI_Dark工人完成签到,获得积分10
6秒前
liyanping发布了新的文献求助10
6秒前
万能图书馆应助echo采纳,获得10
6秒前
8秒前
开放的初曼完成签到,获得积分20
9秒前
菜籽油完成签到,获得积分20
9秒前
都市丽人完成签到,获得积分10
9秒前
田様应助点点采纳,获得10
10秒前
这次会赢吗完成签到 ,获得积分10
11秒前
一路繁花发布了新的文献求助10
13秒前
酷炫的尔丝完成签到 ,获得积分10
15秒前
16秒前
16秒前
小不溜六猫一完成签到,获得积分20
18秒前
18秒前
19秒前
大先生发布了新的文献求助30
19秒前
思源应助坚定背包采纳,获得10
19秒前
西瓜撞地球完成签到 ,获得积分10
19秒前
20秒前
20秒前
若夏1006完成签到 ,获得积分10
21秒前
蜗牛弄墨完成签到,获得积分10
22秒前
小黑子fanfan完成签到,获得积分10
23秒前
24秒前
clean发布了新的文献求助10
25秒前
科研通AI6应助jsmmm采纳,获得10
25秒前
bkagyin应助小不溜六猫一采纳,获得10
28秒前
周周完成签到,获得积分10
28秒前
二货哈士奇完成签到,获得积分20
29秒前
kiltorh完成签到,获得积分10
29秒前
29秒前
29秒前
田様应助lxgz采纳,获得10
31秒前
如意的尔蝶完成签到,获得积分10
32秒前
orixero应助冰冰采纳,获得10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925186
求助须知:如何正确求助?哪些是违规求助? 4195419
关于积分的说明 13030579
捐赠科研通 3966994
什么是DOI,文献DOI怎么找? 2174431
邀请新用户注册赠送积分活动 1191761
关于科研通互助平台的介绍 1101335