Performance of ChatGPT in Ophthalmic Registration and Clinical Diagnosis: Cross-Sectional Study (Preprint)

预印本 横断面研究 医学 2019年冠状病毒病(COVID-19) 验光服务 计算机科学 病理 传染病(医学专业) 疾病 万维网
作者
Shuai Ming,Xi Yao,Xiaohong Guo,Qingge Guo,Kunpeng Xie,D. Chen,Bo Lei
标识
DOI:10.2196/preprints.60226
摘要

BACKGROUND Artificial intelligence (AI) chatbots such as ChatGPT are expected to impact vision health care significantly. Their potential to optimize the consultation process and diagnostic capabilities across range of ophthalmic subspecialties have yet to be fully explored. OBJECTIVE This study aims to investigate the performance of AI chatbots in recommending ophthalmic outpatient registration and diagnosing eye diseases within clinical case profiles. METHODS This cross-sectional study used clinical cases from <i>Chinese Standardized Resident Training–Ophthalmology (2nd Edition)</i>. For each case, 2 profiles were created: patient with history (Hx) and patient with history and examination (Hx+Ex). These profiles served as independent queries for GPT-3.5 and GPT-4.0 (accessed from March 5 to 18, 2024). Similarly, 3 ophthalmic residents were posed the same profiles in a questionnaire format. The accuracy of recommending ophthalmic subspecialty registration was primarily evaluated using Hx profiles. The accuracy of the top-ranked diagnosis and the accuracy of the diagnosis within the top 3 suggestions (do-not-miss diagnosis) were assessed using Hx+Ex profiles. The gold standard for judgment was the published, official diagnosis. Characteristics of incorrect diagnoses by ChatGPT were also analyzed. RESULTS A total of 208 clinical profiles from 12 ophthalmic subspecialties were analyzed (104 Hx and 104 Hx+Ex profiles). For Hx profiles, GPT-3.5, GPT-4.0, and residents showed comparable accuracy in registration suggestions (66/104, 63.5%; 81/104, 77.9%; and 72/104, 69.2%, respectively; <i>P</i>=.07), with <i>ocular trauma</i>, <i>retinal diseases</i>, and <i>strabismus and amblyopia</i> achieving the top 3 accuracies. For Hx+Ex profiles, both GPT-4.0 and residents demonstrated higher diagnostic accuracy than GPT-3.5 (62/104, 59.6% and 63/104, 60.6% vs 41/104, 39.4%; <i>P</i>=.003 and <i>P</i>=.001, respectively). Accuracy for do-not-miss diagnoses also improved (79/104, 76% and 68/104, 65.4% vs 51/104, 49%; <i>P</i>&lt;.001 and <i>P</i>=.02, respectively). The highest diagnostic accuracies were observed in <i>glaucoma</i>; <i>lens diseases</i>; and <i>eyelid, lacrimal, and orbital diseases</i>. GPT-4.0 recorded fewer incorrect top-3 diagnoses (25/42, 60% vs 53/63, 84%; <i>P</i>=.005) and more partially correct diagnoses (21/42, 50% vs 7/63 11%; <i>P</i>&lt;.001) than GPT-3.5, while GPT-3.5 had more completely incorrect (27/63, 43% vs 7/42, 17%; <i>P</i>=.005) and less precise diagnoses (22/63, 35% vs 5/42, 12%; <i>P</i>=.009). CONCLUSIONS GPT-3.5 and GPT-4.0 showed intermediate performance in recommending ophthalmic subspecialties for registration. While GPT-3.5 underperformed, GPT-4.0 approached and numerically surpassed residents in differential diagnosis. AI chatbots show promise in facilitating ophthalmic patient registration. However, their integration into diagnostic decision-making requires more validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助暗夜男采纳,获得10
1秒前
1秒前
樂酉发布了新的文献求助20
1秒前
晚风关注了科研通微信公众号
1秒前
橘子发布了新的文献求助50
1秒前
科研通AI2S应助痴情的寒云采纳,获得10
2秒前
aaaaaa发布了新的文献求助10
2秒前
2秒前
一一应助白金采纳,获得10
2秒前
奋斗绿旋发布了新的文献求助10
2秒前
苗条凌瑶完成签到,获得积分10
3秒前
韩倩发布了新的文献求助10
3秒前
3秒前
调研昵称发布了新的文献求助10
3秒前
3秒前
3秒前
科研仔完成签到,获得积分20
5秒前
科研通AI5应助wq采纳,获得10
6秒前
6秒前
王佳慧完成签到 ,获得积分10
7秒前
yao发布了新的文献求助30
8秒前
8秒前
阿溪发布了新的文献求助10
8秒前
FG发布了新的文献求助10
8秒前
无名老大应助fangfang采纳,获得30
9秒前
调研昵称发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
祺仔发布了新的文献求助10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
Hh完成签到,获得积分10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476745
求助须知:如何正确求助?哪些是违规求助? 3068336
关于积分的说明 9107499
捐赠科研通 2759802
什么是DOI,文献DOI怎么找? 1514301
邀请新用户注册赠送积分活动 700193
科研通“疑难数据库(出版商)”最低求助积分说明 699379