Data-Driven Reliable Facility Location Design

计算机科学 随机性 估计员 数学优化 样品(材料) 样本量测定 数学 统计 色谱法 化学
作者
Hao Shen,Mengying Xue,Zuo‐Jun Max Shen
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/mnsc.2021.02115
摘要

We study the reliable (uncapacitated) facility location (RFL) problem in a data-driven environment where historical observations of random demands and disruptions are available. Owing to the combinatorial optimization nature of the RFL problem and the mixed-binary randomness of parameters therein, the state-of-the-art RFL models applied to the data-driven setting either suggest overly conservative solutions or become computationally prohibitive for large- or even moderate-size problems. In this paper, we address the RFL problem by presenting an innovative prescriptive model aiming to balance solution conservatism with computational efficiency. In particular, our model selects facility locations to minimize the fixed costs plus the expected operating costs approximated by a tractable data-driven estimator, which equals to a probabilistic upper bound on the intractable Kolmogorov distributionally robust optimization estimator. The solution of our model is obtained by solving a mixed-integer linear program that does not scale in the training data size. Our approach is proved to be asymptotically optimal, and offers a theoretical guarantee for its out-of-sample performance in situations with limited data. In addition, we discuss the adaptation of our approach when facing data with covariate information. Numerical results demonstrate that our model significantly outperforms several important RFL models with respect to both in-sample and out-of-sample performances as well as computational efficiency. This paper was accepted by Chung Piaw Teo, optimization. Funding: H. Shen acknowledges the support from the National Natural Science Foundation of China [Grants 72371240, 72001206]. M. Xue acknowledges the support from the National Natural Science Foundation of China [Grant 72201257]. Z.J. M. Shen acknowledges the support from National Natural Science Foundation of China [Grant 71991462], Hong Kong ITC Mainland-Hong Kong Joint Funding Scheme [MHP/192/23], and RGC Theme-based Research Scheme [T32-707/22-N]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.02115 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小珂完成签到,获得积分10
1秒前
皮皮虾完成签到 ,获得积分10
3秒前
4秒前
不能吃太饱完成签到 ,获得积分10
6秒前
buqi发布了新的文献求助10
7秒前
伶俐紫完成签到,获得积分10
8秒前
8秒前
9秒前
Annie发布了新的文献求助20
9秒前
二队淼队长完成签到,获得积分10
10秒前
我是老大应助清沧炽魂采纳,获得10
10秒前
彳亍宣完成签到 ,获得积分10
11秒前
缥缈的闭月完成签到,获得积分10
14秒前
buqi完成签到,获得积分10
14秒前
孔wj完成签到,获得积分10
15秒前
縤雨完成签到 ,获得积分10
15秒前
15秒前
Tao完成签到,获得积分10
20秒前
20秒前
黄景滨完成签到 ,获得积分10
21秒前
22秒前
wwrjj完成签到,获得积分10
23秒前
liu完成签到,获得积分10
23秒前
孤独听雨的猫完成签到 ,获得积分10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
不倦应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
25秒前
macarthur发布了新的文献求助10
25秒前
25秒前
HaojunWang完成签到 ,获得积分10
26秒前
脑洞疼应助wwrjj采纳,获得10
29秒前
Jacob完成签到,获得积分10
29秒前
聪明的宛菡完成签到,获得积分10
31秒前
殷勤的涵梅完成签到 ,获得积分10
33秒前
36秒前
38秒前
39秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561