Data-Driven Reliable Facility Location Design

计算机科学 随机性 估计员 数学优化 样品(材料) 样本量测定 数学 统计 色谱法 化学
作者
Hao Shen,Mengying Xue,Zuo‐Jun Max Shen
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (8): 7182-7199 被引量:2
标识
DOI:10.1287/mnsc.2021.02115
摘要

We study the reliable (uncapacitated) facility location (RFL) problem in a data-driven environment where historical observations of random demands and disruptions are available. Owing to the combinatorial optimization nature of the RFL problem and the mixed-binary randomness of parameters therein, the state-of-the-art RFL models applied to the data-driven setting either suggest overly conservative solutions or become computationally prohibitive for large- or even moderate-size problems. In this paper, we address the RFL problem by presenting an innovative prescriptive model aiming to balance solution conservatism with computational efficiency. In particular, our model selects facility locations to minimize the fixed costs plus the expected operating costs approximated by a tractable data-driven estimator, which equals to a probabilistic upper bound on the intractable Kolmogorov distributionally robust optimization estimator. The solution of our model is obtained by solving a mixed-integer linear program that does not scale in the training data size. Our approach is proved to be asymptotically optimal, and offers a theoretical guarantee for its out-of-sample performance in situations with limited data. In addition, we discuss the adaptation of our approach when facing data with covariate information. Numerical results demonstrate that our model significantly outperforms several important RFL models with respect to both in-sample and out-of-sample performances as well as computational efficiency. This paper was accepted by Chung Piaw Teo, optimization. Funding: H. Shen acknowledges the support from the National Natural Science Foundation of China [Grants 72371240, 72001206]. M. Xue acknowledges the support from the National Natural Science Foundation of China [Grant 72201257]. Z.J. M. Shen acknowledges the support from National Natural Science Foundation of China [Grant 71991462], Hong Kong ITC Mainland-Hong Kong Joint Funding Scheme [MHP/192/23], and RGC Theme-based Research Scheme [T32-707/22-N]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.02115 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
打打应助汪宇采纳,获得10
刚刚
wuxunxun2015发布了新的文献求助10
1秒前
唯心如意完成签到,获得积分10
2秒前
yingzg发布了新的文献求助10
4秒前
zy完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
日富一日完成签到 ,获得积分10
6秒前
娜娜发布了新的文献求助10
6秒前
8秒前
8秒前
考马斯亮蓝完成签到 ,获得积分10
10秒前
shengyou完成签到,获得积分10
10秒前
领导范儿应助Daut采纳,获得10
12秒前
13秒前
Random完成签到,获得积分10
13秒前
14秒前
JunHan发布了新的文献求助10
14秒前
yangshuai完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
Aippan发布了新的文献求助10
17秒前
18秒前
18秒前
汪宇发布了新的文献求助10
18秒前
搞搞科研完成签到 ,获得积分20
18秒前
19秒前
如意皮带完成签到 ,获得积分20
20秒前
21秒前
扬帆远航完成签到,获得积分10
23秒前
艾查恩发布了新的文献求助10
24秒前
25秒前
Ice完成签到 ,获得积分10
27秒前
ding应助鲤鱼采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
Jasper应助科研通管家采纳,获得10
27秒前
Jasper应助科研通管家采纳,获得10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742394
求助须知:如何正确求助?哪些是违规求助? 5408115
关于积分的说明 15344853
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625257
邀请新用户注册赠送积分活动 1574095
关于科研通互助平台的介绍 1531070