Data-Driven Reliable Facility Location Design

计算机科学 随机性 估计员 数学优化 样品(材料) 样本量测定 数学 统计 色谱法 化学
作者
Hao Shen,Mengying Xue,Zuo‐Jun Max Shen
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (8): 7182-7199 被引量:2
标识
DOI:10.1287/mnsc.2021.02115
摘要

We study the reliable (uncapacitated) facility location (RFL) problem in a data-driven environment where historical observations of random demands and disruptions are available. Owing to the combinatorial optimization nature of the RFL problem and the mixed-binary randomness of parameters therein, the state-of-the-art RFL models applied to the data-driven setting either suggest overly conservative solutions or become computationally prohibitive for large- or even moderate-size problems. In this paper, we address the RFL problem by presenting an innovative prescriptive model aiming to balance solution conservatism with computational efficiency. In particular, our model selects facility locations to minimize the fixed costs plus the expected operating costs approximated by a tractable data-driven estimator, which equals to a probabilistic upper bound on the intractable Kolmogorov distributionally robust optimization estimator. The solution of our model is obtained by solving a mixed-integer linear program that does not scale in the training data size. Our approach is proved to be asymptotically optimal, and offers a theoretical guarantee for its out-of-sample performance in situations with limited data. In addition, we discuss the adaptation of our approach when facing data with covariate information. Numerical results demonstrate that our model significantly outperforms several important RFL models with respect to both in-sample and out-of-sample performances as well as computational efficiency. This paper was accepted by Chung Piaw Teo, optimization. Funding: H. Shen acknowledges the support from the National Natural Science Foundation of China [Grants 72371240, 72001206]. M. Xue acknowledges the support from the National Natural Science Foundation of China [Grant 72201257]. Z.J. M. Shen acknowledges the support from National Natural Science Foundation of China [Grant 71991462], Hong Kong ITC Mainland-Hong Kong Joint Funding Scheme [MHP/192/23], and RGC Theme-based Research Scheme [T32-707/22-N]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.02115 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的宛儿完成签到,获得积分10
1秒前
yifanchen完成签到,获得积分10
1秒前
1秒前
伶俐书蝶完成签到 ,获得积分10
1秒前
1秒前
Solitude发布了新的文献求助10
1秒前
1秒前
2秒前
安安完成签到,获得积分10
2秒前
汉堡包应助zz采纳,获得10
2秒前
此晴可待发布了新的文献求助10
2秒前
然十六发布了新的文献求助10
3秒前
3秒前
3秒前
Ww完成签到,获得积分10
3秒前
QQLL发布了新的文献求助10
3秒前
vadz7x发布了新的文献求助10
3秒前
markerfxq完成签到,获得积分10
3秒前
4秒前
罂粟发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
承乐发布了新的文献求助10
6秒前
adelalady发布了新的文献求助10
6秒前
6秒前
善学以致用应助美年达采纳,获得10
7秒前
7秒前
7秒前
Solitude完成签到,获得积分10
8秒前
1282941496完成签到,获得积分10
9秒前
简单的方盒完成签到,获得积分20
9秒前
希望天下0贩的0应助heal采纳,获得10
9秒前
9秒前
兜兜窦完成签到,获得积分10
9秒前
久念发布了新的文献求助10
9秒前
专注的问寒应助帅哥吴克采纳,获得20
10秒前
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603