Data-Driven Reliable Facility Location Design

计算机科学 随机性 估计员 数学优化 样品(材料) 样本量测定 数学 统计 色谱法 化学
作者
Hao Shen,Mengying Xue,Zuo‐Jun Max Shen
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (8): 7182-7199 被引量:2
标识
DOI:10.1287/mnsc.2021.02115
摘要

We study the reliable (uncapacitated) facility location (RFL) problem in a data-driven environment where historical observations of random demands and disruptions are available. Owing to the combinatorial optimization nature of the RFL problem and the mixed-binary randomness of parameters therein, the state-of-the-art RFL models applied to the data-driven setting either suggest overly conservative solutions or become computationally prohibitive for large- or even moderate-size problems. In this paper, we address the RFL problem by presenting an innovative prescriptive model aiming to balance solution conservatism with computational efficiency. In particular, our model selects facility locations to minimize the fixed costs plus the expected operating costs approximated by a tractable data-driven estimator, which equals to a probabilistic upper bound on the intractable Kolmogorov distributionally robust optimization estimator. The solution of our model is obtained by solving a mixed-integer linear program that does not scale in the training data size. Our approach is proved to be asymptotically optimal, and offers a theoretical guarantee for its out-of-sample performance in situations with limited data. In addition, we discuss the adaptation of our approach when facing data with covariate information. Numerical results demonstrate that our model significantly outperforms several important RFL models with respect to both in-sample and out-of-sample performances as well as computational efficiency. This paper was accepted by Chung Piaw Teo, optimization. Funding: H. Shen acknowledges the support from the National Natural Science Foundation of China [Grants 72371240, 72001206]. M. Xue acknowledges the support from the National Natural Science Foundation of China [Grant 72201257]. Z.J. M. Shen acknowledges the support from National Natural Science Foundation of China [Grant 71991462], Hong Kong ITC Mainland-Hong Kong Joint Funding Scheme [MHP/192/23], and RGC Theme-based Research Scheme [T32-707/22-N]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.02115 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静翕完成签到 ,获得积分10
刚刚
komisan完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
坚定寒松完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
1111完成签到 ,获得积分10
11秒前
秋秋完成签到,获得积分10
12秒前
青青完成签到 ,获得积分10
12秒前
完美世界应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
Jasper应助慕容飞凤采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
顾城浪子完成签到,获得积分10
18秒前
有魅力胡萝卜完成签到,获得积分10
19秒前
七QI完成签到 ,获得积分10
20秒前
LIUJIE完成签到,获得积分10
21秒前
576-576完成签到 ,获得积分10
21秒前
smh完成签到 ,获得积分10
23秒前
李健应助有魅力胡萝卜采纳,获得10
23秒前
小武完成签到,获得积分10
23秒前
聂先生完成签到,获得积分10
27秒前
影像大侠完成签到,获得积分10
29秒前
xyzlancet完成签到,获得积分10
30秒前
MM完成签到 ,获得积分10
31秒前
唐唐完成签到,获得积分10
32秒前
WXyue完成签到 ,获得积分10
32秒前
耕牛热完成签到,获得积分10
33秒前
望凌烟完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
jiaojaioo完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
39秒前
端庄的凌旋完成签到,获得积分10
42秒前
嗯嗯完成签到 ,获得积分10
43秒前
Diane完成签到,获得积分10
45秒前
49秒前
fuluyuzhe_668完成签到,获得积分10
50秒前
彭于晏应助petrichor采纳,获得10
50秒前
量子星尘发布了新的文献求助10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858