Data-Driven Reliable Facility Location Design

计算机科学 随机性 估计员 数学优化 样品(材料) 样本量测定 数学 统计 色谱法 化学
作者
Hao Shen,Mengying Xue,Zuo‐Jun Max Shen
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2021.02115
摘要

We study the reliable (uncapacitated) facility location (RFL) problem in a data-driven environment where historical observations of random demands and disruptions are available. Owing to the combinatorial optimization nature of the RFL problem and the mixed-binary randomness of parameters therein, the state-of-the-art RFL models applied to the data-driven setting either suggest overly conservative solutions or become computationally prohibitive for large- or even moderate-size problems. In this paper, we address the RFL problem by presenting an innovative prescriptive model aiming to balance solution conservatism with computational efficiency. In particular, our model selects facility locations to minimize the fixed costs plus the expected operating costs approximated by a tractable data-driven estimator, which equals to a probabilistic upper bound on the intractable Kolmogorov distributionally robust optimization estimator. The solution of our model is obtained by solving a mixed-integer linear program that does not scale in the training data size. Our approach is proved to be asymptotically optimal, and offers a theoretical guarantee for its out-of-sample performance in situations with limited data. In addition, we discuss the adaptation of our approach when facing data with covariate information. Numerical results demonstrate that our model significantly outperforms several important RFL models with respect to both in-sample and out-of-sample performances as well as computational efficiency. This paper was accepted by Chung Piaw Teo, optimization. Funding: H. Shen acknowledges the support from the National Natural Science Foundation of China [Grants 72371240, 72001206]. M. Xue acknowledges the support from the National Natural Science Foundation of China [Grant 72201257]. Z.J. M. Shen acknowledges the support from National Natural Science Foundation of China [Grant 71991462], Hong Kong ITC Mainland-Hong Kong Joint Funding Scheme [MHP/192/23], and RGC Theme-based Research Scheme [T32-707/22-N]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.02115 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学学完成签到,获得积分10
刚刚
李麟发布了新的文献求助10
1秒前
windcreator发布了新的文献求助10
3秒前
自觉松发布了新的文献求助10
3秒前
4秒前
5秒前
meta完成签到,获得积分10
6秒前
优秀真发布了新的文献求助10
6秒前
华仔应助无语啦采纳,获得10
6秒前
金刚经应助榕榕榕采纳,获得10
7秒前
MMMM发布了新的文献求助10
9秒前
赘婿应助锦玟采纳,获得10
9秒前
bkagyin应助吹泡泡的红豆采纳,获得10
10秒前
10秒前
11秒前
11秒前
彭于晏应助李麟采纳,获得10
14秒前
MA完成签到,获得积分10
15秒前
Neo完成签到,获得积分10
15秒前
WWW发布了新的文献求助10
16秒前
mmyhn发布了新的文献求助10
16秒前
郭果儿发布了新的文献求助10
17秒前
英姑应助ZLPY2采纳,获得20
17秒前
Owen应助屑主任采纳,获得10
18秒前
duoduo应助xingxingwang采纳,获得10
18秒前
19秒前
19秒前
MMMM完成签到,获得积分10
20秒前
21秒前
心杨发布了新的文献求助10
21秒前
中和皇极举报求助违规成功
21秒前
加菲丰丰举报求助违规成功
21秒前
嗯哼举报求助违规成功
21秒前
21秒前
22秒前
22秒前
22秒前
Jasper应助看鼠大好河山采纳,获得20
22秒前
高高高完成签到,获得积分20
24秒前
CodeCraft应助勇毅前行采纳,获得10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260503
求助须知:如何正确求助?哪些是违规求助? 2901672
关于积分的说明 8316639
捐赠科研通 2571234
什么是DOI,文献DOI怎么找? 1396914
科研通“疑难数据库(出版商)”最低求助积分说明 653598
邀请新用户注册赠送积分活动 632040