Plastic Deformation of LiNi0.5Mn1.5O4 Single Crystals Caused by Domain Orientation Dynamics

材料科学 方向(向量空间) 领域(数学分析) 变形(气象学) 凝聚态物理 结晶学 化学物理 复合材料 几何学 物理 数学分析 化学 数学
作者
Nikita Vostrov,Isaac Martens,Mattia Colalongo,Edoardo Zatterin,Michal Ronovský,Adrien Boulineau,Steven Leake,Xiaobo Zhu,Lianzhou Wang,Marie‐Ingrid Richard,Tobias U. Schülli
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202404933
摘要

Abstract The nanoscale mechanisms of ion deintercalation in battery cathode materials remain poorly understood, especially the relationship between crystallographic defects (dislocations, small angle grain boundaries, vacancies, etc ), device performance, and durability. In this work, operando scanning X‐ray diffraction microscopy (SXDM) and multi‐crystal X‐ray diffraction (MCXD) are used to investigate microstrain and lattice tilt inhomogeneities inside Li 1 − x Ni 0.5 Mn 1.5 O 4 cathode particles during electrochemical cycling and their influence on the material degradation. Using these techniques, microscale lattice degradation mechanisms are investigated inside single crystals, extend it to an inter‐particle scale, and correlate it with the long‐term degradation of the cathode. During cycling, a crystal lattice deformation is observed, associated with phase transitions and inherent lattice defects in the measured particle. Residual misorientations are observed in the structure even after full discharge, indicating an irreversible structural change of the lattice. However, after long‐term cycling such lattice misorientations together with active material dissolution are further exacerbated only in a subset of particles, suggesting high heterogeneity of degradation mechanisms between the cathode particles. Selective degradation of particles could be caused by varying crystal quality across the sample, highlighting the need for a deep understanding of defect microstructures to enable a more rational design of materials with enhanced durability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好久不见发布了新的文献求助10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
LaTeXer应助科研通管家采纳,获得50
1秒前
烟花应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
小小博应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
奶黄包应助科研通管家采纳,获得50
2秒前
2秒前
ZZZ应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
奇奇淼完成签到 ,获得积分10
2秒前
大个应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
无私迎海完成签到,获得积分10
3秒前
3秒前
平陵完成签到,获得积分10
3秒前
4秒前
4秒前
GaoZz完成签到,获得积分10
4秒前
所所应助哎呦采纳,获得10
4秒前
逝者如斯只是看着完成签到,获得积分10
5秒前
斯文败类应助zcx采纳,获得10
5秒前
5秒前
JamesPei应助恪心采纳,获得10
5秒前
fantasy完成签到 ,获得积分10
5秒前
thuuu完成签到,获得积分10
6秒前
朱洪发布了新的文献求助10
6秒前
6秒前
英姑应助思念是什么味道采纳,获得10
6秒前
黑暗与黎明完成签到 ,获得积分10
7秒前
7秒前
7秒前
顺心绮兰完成签到,获得积分10
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957288
求助须知:如何正确求助?哪些是违规求助? 3503340
关于积分的说明 11113191
捐赠科研通 3234594
什么是DOI,文献DOI怎么找? 1787911
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802349