亚稳态
Kuramoto模型
物理
同步(交流)
人口
统计物理学
相干态
理论(学习稳定性)
滞后
行波
量子力学
数学
拓扑(电路)
计算机科学
数学分析
量子
人口学
社会学
计算机网络
组合数学
机器学习
作者
Bojun Li,Nariya Uchida
出处
期刊:Chaos
[American Institute of Physics]
日期:2025-01-01
卷期号:35 (1)
摘要
An Ott–Antonsen reduced M-population of Kuramoto–Sakaguchi oscillators is investigated, focusing on the influence of the phase-lag parameter α on the collective dynamics. For oscillator populations coupled on a ring, we obtained a wide variety of spatiotemporal patterns, including coherent states, traveling waves, partially synchronized states, modulated states, and incoherent states. Back-and-forth transitions between these states are found, which suggest metastability. Linear stability analysis reveals the stable regions of coherent states with different winding numbers q. Within certain α ranges, the system settles into stable traveling wave solutions despite the coherent states also being linearly stable. For around α≈0.46π, the system displays the most frequent metastable transitions between coherent states and partially synchronized states, while for α closer to π/2, metastable transitions arise between partially synchronized states and modulated states. This model captures metastable dynamics akin to brain activity, offering insights into the synchronization of brain networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI