Performance of Two Deep Learning-based AI Models for Breast Cancer Detection and Localization on Screening Mammograms from BreastScreen Norway

医学 接收机工作特性 置信区间 乳腺癌 乳腺摄影术 人工智能 乳腺癌筛查 癌症 医学物理学 妇科 内科学 计算机科学
作者
Marit Almenning Martiniussen,Marthe Larsen,Tone Hovda,Merete U. Kristiansen,Fredrik A. Dahl,Line Eikvil,Olav Brautaset,Atle Bjørnerud,Vessela N. Kristensen,Marie Burns Bergan,Solveig Hofvind
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240039
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To evaluate cancer detection and marker placement accuracy of two artificial intelligence (AI) models developed for interpretation of screening mammograms. Materials and Methods This retrospective study included data from 129 434 screening examinations (all female, mean age 59.2, SD = 5.8) performed between January 2008 and December 2018 in BreastScreen Norway. Model A was commercially available and B was an in-house model. Area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CIs) were calculated. The study defined 3.2% and 11.1% of the examinations with the highest AI scores as positive, threshold 1 and 2, respectively. A radiologic review assessed location of AI markings and classified interval cancers as true or false negative. Results The AUC was 0.93 (95% CI: 0.92–0.94) for model A and B when including screen-detected and interval cancers. Model A identified 82.5% (611/741) of the screen-detected cancers at threshold 1 and 92.4% (685/741) at threshold 2. For model B, the numbers were 81.8% (606/741) and 93.7% (694/741), respectively. The AI markings were correctly localized for all screen-detected cancers identified by both models and 82% (56/68) of the interval cancers for model A and 79% (54/68) for B. At the review, 21.6% (45/208) of the interval cancers were identified at the preceding screening by either or both models, correctly localized and classified as false negative ( n = 17) or with minimal signs of malignancy ( n = 28). Conclusion Both AI models showed promising performance for cancer detection on screening mammograms. The AI markings corresponded well to the true cancer locations. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Y.B.Cao完成签到,获得积分10
刚刚
小鑫完成签到,获得积分10
1秒前
zzx发布了新的文献求助10
1秒前
慕新完成签到,获得积分0
4秒前
天天快乐应助missinglotta采纳,获得10
4秒前
GHL完成签到,获得积分10
5秒前
帅气的雷完成签到,获得积分10
5秒前
木木完成签到,获得积分10
5秒前
鸽子完成签到,获得积分10
7秒前
八月完成签到,获得积分10
7秒前
7秒前
在封我就急眼啦完成签到,获得积分10
8秒前
浮尘完成签到 ,获得积分0
8秒前
10秒前
aaa完成签到,获得积分10
10秒前
高贵的思天完成签到,获得积分10
10秒前
灵巧的十八完成签到 ,获得积分10
12秒前
12秒前
成就宛完成签到,获得积分10
13秒前
Summer发布了新的文献求助10
13秒前
开心烨磊发布了新的文献求助10
14秒前
15秒前
17秒前
外向的易蓉完成签到 ,获得积分10
17秒前
osmanthus完成签到,获得积分10
17秒前
满城烟沙完成签到 ,获得积分0
19秒前
JIASHOUSHOU完成签到,获得积分10
19秒前
20秒前
20秒前
俭朴巨人发布了新的文献求助10
20秒前
胡hhhhhhhhhh发布了新的文献求助10
21秒前
callmecjh完成签到,获得积分10
21秒前
21秒前
22秒前
局外人完成签到,获得积分10
22秒前
在水一方应助开心烨磊采纳,获得10
22秒前
生信小菜鸟完成签到 ,获得积分10
22秒前
shiqi1108完成签到 ,获得积分10
22秒前
24秒前
頔頔哒哒发布了新的文献求助10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761136
求助须知:如何正确求助?哪些是违规求助? 3305089
关于积分的说明 10132226
捐赠科研通 3019082
什么是DOI,文献DOI怎么找? 1657974
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754608