Beyond AlphaFold2: The Impact of AI for the Further Improvement of Protein Structure Prediction

蛋白质结构预测 计算机科学 蛋白质结构 化学 生物化学
作者
Ahmet G. Genc,Liam J. McGuffin
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 121-139 被引量:1
标识
DOI:10.1007/978-1-0716-4196-5_7
摘要

Protein structure prediction is fundamental to molecular biology and has numerous applications in areas such as drug discovery and protein engineering. Machine learning techniques have greatly advanced protein 3D modeling in recent years, particularly with the development of AlphaFold2 (AF2), which can analyze sequences of amino acids and predict 3D structures with near experimental accuracy. Since the release of AF2, numerous studies have been conducted, either using AF2 directly for large-scale modeling or building upon the software for other use cases. Many reviews have been published discussing the impact of AF2 in the field of protein bioinformatics, particularly in relation to neural networks, which have highlighted what AF2 can and cannot do. It is evident that AF2 and similar approaches are open to further development and several new approaches have emerged, in addition to older refinement approaches, for improving the quality of predictions. Here we provide a brief overview, aimed at the general biologist, of how machine learning techniques have been used for improvement of 3D models of proteins following AF2, and we highlight the impacts of these approaches. In the most recent experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP15), the most successful groups all developed their own tools for protein structure modeling that were based at least in some part on AF2. This improvement involved employing techniques such as generative modeling, changing parameters such as dropout to generate more AF2 structures, and data-driven approaches including using alternative templates and MSAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实的虔完成签到,获得积分10
刚刚
1秒前
欢喜德天发布了新的文献求助20
1秒前
乐乐应助林安笙采纳,获得10
1秒前
丘山完成签到,获得积分10
2秒前
小筒发布了新的文献求助10
3秒前
深情安青应助7890733采纳,获得10
3秒前
从梦发布了新的文献求助30
3秒前
3秒前
往返自然完成签到,获得积分10
4秒前
hx完成签到,获得积分10
4秒前
5秒前
小菜发布了新的文献求助10
5秒前
6秒前
哈ha完成签到,获得积分20
6秒前
7秒前
7秒前
Akim应助至浩采纳,获得10
8秒前
8秒前
季裕发布了新的文献求助10
8秒前
小筒完成签到,获得积分20
9秒前
李爱国应助尹恩惠采纳,获得10
9秒前
刘祺芳发布了新的文献求助10
9秒前
9秒前
9秒前
科研通AI6应助多西得采纳,获得10
9秒前
小橘子发布了新的文献求助10
9秒前
BareBear应助玩命的易绿采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
加点研发布了新的文献求助10
11秒前
wanci应助你可真行采纳,获得10
11秒前
顺顺发布了新的文献求助10
12秒前
cz完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
XFX想有钱完成签到,获得积分10
12秒前
xuzhe完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481425
求助须知:如何正确求助?哪些是违规求助? 4582472
关于积分的说明 14385266
捐赠科研通 4511130
什么是DOI,文献DOI怎么找? 2472225
邀请新用户注册赠送积分活动 1458545
关于科研通互助平台的介绍 1432065