已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Beyond AlphaFold2: The Impact of AI for the Further Improvement of Protein Structure Prediction

蛋白质结构预测 计算机科学 蛋白质结构 化学 生物化学
作者
Ahmet G. Genc,Liam J. McGuffin
出处
期刊:Methods in molecular biology 卷期号:: 121-139
标识
DOI:10.1007/978-1-0716-4196-5_7
摘要

Protein structure prediction is fundamental to molecular biology and has numerous applications in areas such as drug discovery and protein engineering. Machine learning techniques have greatly advanced protein 3D modeling in recent years, particularly with the development of AlphaFold2 (AF2), which can analyze sequences of amino acids and predict 3D structures with near experimental accuracy. Since the release of AF2, numerous studies have been conducted, either using AF2 directly for large-scale modeling or building upon the software for other use cases. Many reviews have been published discussing the impact of AF2 in the field of protein bioinformatics, particularly in relation to neural networks, which have highlighted what AF2 can and cannot do. It is evident that AF2 and similar approaches are open to further development and several new approaches have emerged, in addition to older refinement approaches, for improving the quality of predictions. Here we provide a brief overview, aimed at the general biologist, of how machine learning techniques have been used for improvement of 3D models of proteins following AF2, and we highlight the impacts of these approaches. In the most recent experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP15), the most successful groups all developed their own tools for protein structure modeling that were based at least in some part on AF2. This improvement involved employing techniques such as generative modeling, changing parameters such as dropout to generate more AF2 structures, and data-driven approaches including using alternative templates and MSAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chiyudoubao完成签到,获得积分10
1秒前
随缘完成签到 ,获得积分10
3秒前
小蘑菇应助爱笑的大白菜采纳,获得10
4秒前
Omni完成签到,获得积分10
6秒前
monair完成签到 ,获得积分10
8秒前
星辰大海应助Jj采纳,获得10
8秒前
9秒前
llllissa完成签到,获得积分10
10秒前
易玉燕完成签到,获得积分10
11秒前
甜甜甜完成签到 ,获得积分10
13秒前
13秒前
钮祜禄萱完成签到 ,获得积分10
15秒前
Stalin完成签到,获得积分10
16秒前
威武灵阳完成签到,获得积分10
16秒前
活泼蛋挞完成签到,获得积分10
17秒前
哈哈哈完成签到 ,获得积分10
18秒前
yiduo发布了新的文献求助10
20秒前
温馨家园完成签到 ,获得积分10
21秒前
糊涂的丹南完成签到 ,获得积分10
23秒前
Lynny完成签到 ,获得积分10
26秒前
27秒前
YY完成签到,获得积分10
27秒前
27秒前
ZhaoY完成签到,获得积分10
28秒前
xiaojcom完成签到,获得积分10
30秒前
yu发布了新的文献求助10
31秒前
tuanheqi完成签到,获得积分0
33秒前
Jj发布了新的文献求助10
34秒前
yu完成签到,获得积分10
39秒前
活力的泥猴桃完成签到 ,获得积分10
39秒前
Saunak完成签到,获得积分10
42秒前
xu完成签到,获得积分10
44秒前
48秒前
49秒前
活泼新儿完成签到 ,获得积分10
50秒前
kk发布了新的文献求助200
50秒前
活力的小猫咪完成签到 ,获得积分10
51秒前
zhong发布了新的文献求助10
52秒前
时尚问安完成签到 ,获得积分10
56秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162149
求助须知:如何正确求助?哪些是违规求助? 2813236
关于积分的说明 7899361
捐赠科研通 2472473
什么是DOI,文献DOI怎么找? 1316444
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142