Beyond AlphaFold2: The Impact of AI for the Further Improvement of Protein Structure Prediction

蛋白质结构预测 计算机科学 蛋白质结构 化学 生物化学
作者
Ahmet G. Genc,Liam J. McGuffin
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 121-139 被引量:1
标识
DOI:10.1007/978-1-0716-4196-5_7
摘要

Protein structure prediction is fundamental to molecular biology and has numerous applications in areas such as drug discovery and protein engineering. Machine learning techniques have greatly advanced protein 3D modeling in recent years, particularly with the development of AlphaFold2 (AF2), which can analyze sequences of amino acids and predict 3D structures with near experimental accuracy. Since the release of AF2, numerous studies have been conducted, either using AF2 directly for large-scale modeling or building upon the software for other use cases. Many reviews have been published discussing the impact of AF2 in the field of protein bioinformatics, particularly in relation to neural networks, which have highlighted what AF2 can and cannot do. It is evident that AF2 and similar approaches are open to further development and several new approaches have emerged, in addition to older refinement approaches, for improving the quality of predictions. Here we provide a brief overview, aimed at the general biologist, of how machine learning techniques have been used for improvement of 3D models of proteins following AF2, and we highlight the impacts of these approaches. In the most recent experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP15), the most successful groups all developed their own tools for protein structure modeling that were based at least in some part on AF2. This improvement involved employing techniques such as generative modeling, changing parameters such as dropout to generate more AF2 structures, and data-driven approaches including using alternative templates and MSAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
灵均完成签到 ,获得积分10
刚刚
1秒前
动人的珩完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
Peng完成签到,获得积分20
1秒前
2秒前
雪ノ下詩乃完成签到,获得积分10
2秒前
浮游应助自然的早晨采纳,获得10
2秒前
小青椒应助曾辉采纳,获得10
3秒前
3秒前
蹦蹦灯儿发布了新的文献求助10
3秒前
默默筮发布了新的文献求助10
3秒前
爱喝酸奶发布了新的文献求助10
3秒前
神奇宝贝完成签到,获得积分10
3秒前
4秒前
bensenback完成签到,获得积分10
4秒前
ok完成签到,获得积分10
4秒前
5秒前
Criminology34举报努力搬砖求助涉嫌违规
5秒前
7890733发布了新的文献求助10
5秒前
Natsu完成签到,获得积分10
5秒前
Accelerator完成签到,获得积分10
5秒前
zheng发布了新的文献求助30
6秒前
6秒前
噗咔咔ya完成签到 ,获得积分10
6秒前
7秒前
cc发布了新的文献求助10
7秒前
pcr163应助传统的宝莹采纳,获得200
7秒前
7秒前
7秒前
Nyxia发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
YXYWZMSZ发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068676
求助须知:如何正确求助?哪些是违规求助? 4290262
关于积分的说明 13366925
捐赠科研通 4110092
什么是DOI,文献DOI怎么找? 2250689
邀请新用户注册赠送积分活动 1255935
关于科研通互助平台的介绍 1188480