All‐Sky Microwave Radiance Observation Operator Based on Deep Learning With Physical Constraints

光辉 辐射传输 遥感 大气辐射传输码 计算机科学 环境科学 数据同化 气象学 物理 地质学 光学
作者
Zeting Li,Wei Han,Xiaoze Xu,Xiuyu Sun,Hao Li
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (23)
标识
DOI:10.1029/2024jd042436
摘要

Abstract Satellite data assimilation relies on the radiative transfer models (RTMs) to establish the relationships between model state variables and satellite radiances. However, atmospheric radiative transfer calculations are computationally expensive, especially when involving multiple‐scattering calculations in cloudy areas. In recent years, deep learning (DL) models have been increasingly applied to emulate and accelerate physical models. This study, for the first time, explores DL techniques to emulate all‐sky radiative transfer in microwave bands. The FengYun‐3E (FY‐3E) Microwave Humidity Sounder‐2 (MWHS‐2) was selected as the target instrument due to its comprehensive spectral coverage, with the radiative transfer for TOVS scattering module (RTTOV‐SCATT) serving as the reference model. Three DL architectures were trained and compared, including multilayer perceptron (MLP), Bidirectional Long Short‐Term Memory with Attention (BiLSTM‐Attention), and Transformer. The BiLSTM‐Attention architecture demonstrated superior performance in both clear‐sky and cloudy radiance simulations. This may be attributed to its bidirectional recurrent structure resembling physical radiative transfer processes and the attention mechanism's ability to link MWHS‐2 channels with corresponding vertical layers. Although DL models achieve high accuracy in forward prediction, they often struggle with instability in Jacobian calculations. To address this issue, the trained BiLSTM‐Attention model was fine‐tuned using the reference model Jacobians as physical constraints. The fine‐tuned BiLSTM‐Attention model accurately characterized radiance sensitivities to temperature, water vapor, and hydrometeors under different cloud conditions, indicating its potential to serve as a radiance observation operator in data assimilation and physical retrieval applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃雨寒完成签到 ,获得积分10
刚刚
right完成签到 ,获得积分10
3秒前
曾经的刺猬完成签到,获得积分10
4秒前
彭于晏应助123采纳,获得10
5秒前
Yolanda3088完成签到,获得积分20
5秒前
yuan完成签到,获得积分20
7秒前
stephenzh完成签到,获得积分10
9秒前
机智的紫丝完成签到,获得积分10
10秒前
哭泣凤灵完成签到 ,获得积分10
10秒前
11秒前
GodMG应助可耐的雁凡采纳,获得10
11秒前
16秒前
17秒前
Yo完成签到,获得积分10
19秒前
BCEMTZ完成签到,获得积分10
20秒前
21秒前
loulan完成签到,获得积分10
21秒前
21秒前
空2完成签到 ,获得积分10
21秒前
千山暮雪发布了新的文献求助10
22秒前
24秒前
闪闪龙猫完成签到,获得积分10
25秒前
Tong完成签到,获得积分20
25秒前
浅笑成风完成签到,获得积分10
26秒前
27秒前
huangyi发布了新的文献求助10
27秒前
27秒前
28秒前
枫之林完成签到,获得积分10
29秒前
lingua应助正霖采纳,获得20
30秒前
脑瓜子嗡嗡滴完成签到,获得积分10
31秒前
二小完成签到 ,获得积分10
33秒前
Alan完成签到 ,获得积分10
33秒前
子车茗应助大力翠丝采纳,获得20
34秒前
35秒前
QDU应助Rainy采纳,获得20
35秒前
huangyi完成签到,获得积分10
35秒前
36秒前
尽断发布了新的文献求助10
37秒前
Hosea完成签到 ,获得积分10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574