已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

All‐Sky Microwave Radiance Observation Operator Based on Deep Learning With Physical Constraints

光辉 辐射传输 遥感 大气辐射传输码 计算机科学 环境科学 数据同化 气象学 物理 地质学 光学
作者
Zeting Li,Wei Han,Xiaoze Xu,Xiuyu Sun,Hao Li
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (23)
标识
DOI:10.1029/2024jd042436
摘要

Abstract Satellite data assimilation relies on the radiative transfer models (RTMs) to establish the relationships between model state variables and satellite radiances. However, atmospheric radiative transfer calculations are computationally expensive, especially when involving multiple‐scattering calculations in cloudy areas. In recent years, deep learning (DL) models have been increasingly applied to emulate and accelerate physical models. This study, for the first time, explores DL techniques to emulate all‐sky radiative transfer in microwave bands. The FengYun‐3E (FY‐3E) Microwave Humidity Sounder‐2 (MWHS‐2) was selected as the target instrument due to its comprehensive spectral coverage, with the radiative transfer for TOVS scattering module (RTTOV‐SCATT) serving as the reference model. Three DL architectures were trained and compared, including multilayer perceptron (MLP), Bidirectional Long Short‐Term Memory with Attention (BiLSTM‐Attention), and Transformer. The BiLSTM‐Attention architecture demonstrated superior performance in both clear‐sky and cloudy radiance simulations. This may be attributed to its bidirectional recurrent structure resembling physical radiative transfer processes and the attention mechanism's ability to link MWHS‐2 channels with corresponding vertical layers. Although DL models achieve high accuracy in forward prediction, they often struggle with instability in Jacobian calculations. To address this issue, the trained BiLSTM‐Attention model was fine‐tuned using the reference model Jacobians as physical constraints. The fine‐tuned BiLSTM‐Attention model accurately characterized radiance sensitivities to temperature, water vapor, and hydrometeors under different cloud conditions, indicating its potential to serve as a radiance observation operator in data assimilation and physical retrieval applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪顶蛋糕发布了新的文献求助10
刚刚
chujun_cai完成签到 ,获得积分10
刚刚
chenfaju完成签到,获得积分10
1秒前
Ericlee发布了新的文献求助10
1秒前
sky完成签到,获得积分10
2秒前
chenfaju发布了新的文献求助10
4秒前
Lucas应助Ericlee采纳,获得10
5秒前
爆米花应助hsc大爹采纳,获得10
5秒前
毛豆应助漂亮的寄真采纳,获得10
5秒前
Nitoowoo完成签到,获得积分10
5秒前
6秒前
MWY完成签到,获得积分10
6秒前
自信的网络完成签到 ,获得积分10
6秒前
天天快乐应助轻松的向松采纳,获得10
6秒前
超级幼旋应助日尧采纳,获得10
8秒前
sduweiyu完成签到 ,获得积分10
11秒前
ZhaohuaXie应助迷你的颖采纳,获得10
11秒前
11秒前
Ericlee完成签到,获得积分20
12秒前
记录者完成签到 ,获得积分10
12秒前
马嘉祺超绝鸡肉线完成签到,获得积分10
12秒前
coco发布了新的文献求助10
14秒前
汉堡包应助Nitoowoo采纳,获得10
14秒前
17秒前
17秒前
传统的孤丝完成签到 ,获得积分10
18秒前
浮游应助咖喱爆炒鱼蛋采纳,获得10
18秒前
我是老大应助xx采纳,获得10
23秒前
祁问儿完成签到 ,获得积分10
23秒前
漂亮的寄真完成签到,获得积分10
23秒前
平淡雪枫完成签到 ,获得积分10
25秒前
goodgoodstudy发布了新的文献求助10
25秒前
贝贝完成签到,获得积分10
26秒前
曾经紫菱完成签到,获得积分20
27秒前
31秒前
华桦子完成签到 ,获得积分10
33秒前
小杨完成签到,获得积分10
36秒前
初昀杭完成签到 ,获得积分10
37秒前
38秒前
玖玖完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5006485
求助须知:如何正确求助?哪些是违规求助? 4249902
关于积分的说明 13242275
捐赠科研通 4049939
什么是DOI,文献DOI怎么找? 2215529
邀请新用户注册赠送积分活动 1225436
关于科研通互助平台的介绍 1146138