已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

All‐Sky Microwave Radiance Observation Operator Based on Deep Learning With Physical Constraints

光辉 辐射传输 遥感 大气辐射传输码 计算机科学 环境科学 数据同化 气象学 物理 地质学 光学
作者
Zeting Li,Wei Han,Xiaoze Xu,Xiuyu Sun,Hao Li
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (23)
标识
DOI:10.1029/2024jd042436
摘要

Abstract Satellite data assimilation relies on the radiative transfer models (RTMs) to establish the relationships between model state variables and satellite radiances. However, atmospheric radiative transfer calculations are computationally expensive, especially when involving multiple‐scattering calculations in cloudy areas. In recent years, deep learning (DL) models have been increasingly applied to emulate and accelerate physical models. This study, for the first time, explores DL techniques to emulate all‐sky radiative transfer in microwave bands. The FengYun‐3E (FY‐3E) Microwave Humidity Sounder‐2 (MWHS‐2) was selected as the target instrument due to its comprehensive spectral coverage, with the radiative transfer for TOVS scattering module (RTTOV‐SCATT) serving as the reference model. Three DL architectures were trained and compared, including multilayer perceptron (MLP), Bidirectional Long Short‐Term Memory with Attention (BiLSTM‐Attention), and Transformer. The BiLSTM‐Attention architecture demonstrated superior performance in both clear‐sky and cloudy radiance simulations. This may be attributed to its bidirectional recurrent structure resembling physical radiative transfer processes and the attention mechanism's ability to link MWHS‐2 channels with corresponding vertical layers. Although DL models achieve high accuracy in forward prediction, they often struggle with instability in Jacobian calculations. To address this issue, the trained BiLSTM‐Attention model was fine‐tuned using the reference model Jacobians as physical constraints. The fine‐tuned BiLSTM‐Attention model accurately characterized radiance sensitivities to temperature, water vapor, and hydrometeors under different cloud conditions, indicating its potential to serve as a radiance observation operator in data assimilation and physical retrieval applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbhk完成签到,获得积分10
1秒前
畅快的虔纹完成签到,获得积分20
2秒前
song完成签到,获得积分20
4秒前
归尘发布了新的文献求助10
5秒前
默默完成签到 ,获得积分10
5秒前
polite完成签到 ,获得积分10
6秒前
浮游应助威武的元彤采纳,获得10
6秒前
DBP87弹完成签到 ,获得积分10
7秒前
fei完成签到 ,获得积分10
8秒前
smile完成签到 ,获得积分10
8秒前
完美的沉鱼完成签到 ,获得积分10
8秒前
万能图书馆应助夏侯德东采纳,获得10
11秒前
Jason2002完成签到 ,获得积分10
11秒前
科研通AI5应助askdha采纳,获得10
11秒前
12秒前
古菇顾完成签到 ,获得积分10
14秒前
狗妹那塞完成签到,获得积分0
15秒前
Chloe完成签到,获得积分20
16秒前
幺幺完成签到 ,获得积分20
16秒前
科研花完成签到 ,获得积分10
17秒前
17秒前
18秒前
朝槿完成签到 ,获得积分10
18秒前
不爱写论文完成签到,获得积分10
18秒前
大方听白完成签到 ,获得积分10
19秒前
汉堡包应助zhangliangfu采纳,获得10
20秒前
bkagyin应助睁不开眼睛采纳,获得10
20秒前
Crystal完成签到 ,获得积分10
21秒前
夏侯德东发布了新的文献求助10
22秒前
_ban完成签到 ,获得积分10
22秒前
LayM发布了新的文献求助10
24秒前
Chloe发布了新的文献求助10
24秒前
LiLi完成签到 ,获得积分10
25秒前
清醒完成签到,获得积分10
25秒前
27秒前
香山叶正红完成签到 ,获得积分10
27秒前
Anlocia完成签到 ,获得积分10
27秒前
超帅慕晴完成签到,获得积分10
27秒前
29秒前
球球完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172597
求助须知:如何正确求助?哪些是违规求助? 4362775
关于积分的说明 13584396
捐赠科研通 4210832
什么是DOI,文献DOI怎么找? 2309516
邀请新用户注册赠送积分活动 1308631
关于科研通互助平台的介绍 1255818