All‐Sky Microwave Radiance Observation Operator Based on Deep Learning With Physical Constraints

光辉 辐射传输 遥感 大气辐射传输码 计算机科学 环境科学 数据同化 气象学 物理 地质学 光学
作者
Zeting Li,Wei Han,Xiaoze Xu,Xiuyu Sun,Hao Li
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (23) 被引量:1
标识
DOI:10.1029/2024jd042436
摘要

Abstract Satellite data assimilation relies on the radiative transfer models (RTMs) to establish the relationships between model state variables and satellite radiances. However, atmospheric radiative transfer calculations are computationally expensive, especially when involving multiple‐scattering calculations in cloudy areas. In recent years, deep learning (DL) models have been increasingly applied to emulate and accelerate physical models. This study, for the first time, explores DL techniques to emulate all‐sky radiative transfer in microwave bands. The FengYun‐3E (FY‐3E) Microwave Humidity Sounder‐2 (MWHS‐2) was selected as the target instrument due to its comprehensive spectral coverage, with the radiative transfer for TOVS scattering module (RTTOV‐SCATT) serving as the reference model. Three DL architectures were trained and compared, including multilayer perceptron (MLP), Bidirectional Long Short‐Term Memory with Attention (BiLSTM‐Attention), and Transformer. The BiLSTM‐Attention architecture demonstrated superior performance in both clear‐sky and cloudy radiance simulations. This may be attributed to its bidirectional recurrent structure resembling physical radiative transfer processes and the attention mechanism's ability to link MWHS‐2 channels with corresponding vertical layers. Although DL models achieve high accuracy in forward prediction, they often struggle with instability in Jacobian calculations. To address this issue, the trained BiLSTM‐Attention model was fine‐tuned using the reference model Jacobians as physical constraints. The fine‐tuned BiLSTM‐Attention model accurately characterized radiance sensitivities to temperature, water vapor, and hydrometeors under different cloud conditions, indicating its potential to serve as a radiance observation operator in data assimilation and physical retrieval applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
所所应助闪闪的屁股采纳,获得10
1秒前
Hello应助橘子采纳,获得10
3秒前
ljq完成签到,获得积分20
4秒前
认真涵蕾发布了新的文献求助10
5秒前
5秒前
6秒前
搞怪元彤发布了新的文献求助10
6秒前
7秒前
7秒前
槐序二三完成签到,获得积分10
7秒前
枫枫829发布了新的文献求助10
9秒前
9秒前
11秒前
Cloud发布了新的文献求助50
12秒前
哲欣完成签到,获得积分10
12秒前
852应助怡宝采纳,获得10
14秒前
bei完成签到,获得积分10
16秒前
所所应助马少洋采纳,获得10
16秒前
Wudifairy完成签到,获得积分10
17秒前
研究牲完成签到,获得积分10
18秒前
墨然然完成签到 ,获得积分10
23秒前
科研小白完成签到 ,获得积分10
24秒前
Orange应助沉静尔曼采纳,获得10
24秒前
英俊的铭应助爱听歌从蓉采纳,获得10
24秒前
24秒前
麻薯头头发布了新的文献求助10
25秒前
26秒前
27秒前
阔达凝天发布了新的文献求助10
28秒前
eric888应助科研通管家采纳,获得100
28秒前
浮游应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
李爱国应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
Hilda007应助科研通管家采纳,获得10
28秒前
29秒前
浮游应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296018
求助须知:如何正确求助?哪些是违规求助? 4445360
关于积分的说明 13836028
捐赠科研通 4330050
什么是DOI,文献DOI怎么找? 2376864
邀请新用户注册赠送积分活动 1372213
关于科研通互助平台的介绍 1337586