All‐Sky Microwave Radiance Observation Operator Based on Deep Learning With Physical Constraints

光辉 辐射传输 遥感 大气辐射传输码 计算机科学 环境科学 数据同化 气象学 物理 地质学 光学
作者
Zeting Li,Wei Han,Xiaoze Xu,Xiuyu Sun,Hao Li
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (23) 被引量:1
标识
DOI:10.1029/2024jd042436
摘要

Abstract Satellite data assimilation relies on the radiative transfer models (RTMs) to establish the relationships between model state variables and satellite radiances. However, atmospheric radiative transfer calculations are computationally expensive, especially when involving multiple‐scattering calculations in cloudy areas. In recent years, deep learning (DL) models have been increasingly applied to emulate and accelerate physical models. This study, for the first time, explores DL techniques to emulate all‐sky radiative transfer in microwave bands. The FengYun‐3E (FY‐3E) Microwave Humidity Sounder‐2 (MWHS‐2) was selected as the target instrument due to its comprehensive spectral coverage, with the radiative transfer for TOVS scattering module (RTTOV‐SCATT) serving as the reference model. Three DL architectures were trained and compared, including multilayer perceptron (MLP), Bidirectional Long Short‐Term Memory with Attention (BiLSTM‐Attention), and Transformer. The BiLSTM‐Attention architecture demonstrated superior performance in both clear‐sky and cloudy radiance simulations. This may be attributed to its bidirectional recurrent structure resembling physical radiative transfer processes and the attention mechanism's ability to link MWHS‐2 channels with corresponding vertical layers. Although DL models achieve high accuracy in forward prediction, they often struggle with instability in Jacobian calculations. To address this issue, the trained BiLSTM‐Attention model was fine‐tuned using the reference model Jacobians as physical constraints. The fine‐tuned BiLSTM‐Attention model accurately characterized radiance sensitivities to temperature, water vapor, and hydrometeors under different cloud conditions, indicating its potential to serve as a radiance observation operator in data assimilation and physical retrieval applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信的竹员外完成签到,获得积分10
1秒前
糊涂的冰菱完成签到,获得积分10
1秒前
谢黎关注了科研通微信公众号
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
渡繁完成签到 ,获得积分10
1秒前
魔幻安南完成签到 ,获得积分10
2秒前
4秒前
jovrtic发布了新的文献求助10
5秒前
duduying完成签到,获得积分10
5秒前
明天完成签到 ,获得积分10
5秒前
7秒前
李嘉诚发布了新的文献求助10
7秒前
热心市民完成签到 ,获得积分10
8秒前
木风完成签到,获得积分10
8秒前
难过的溪流完成签到 ,获得积分10
9秒前
阔达的秀发完成签到,获得积分10
10秒前
10秒前
10秒前
今天也要开心Y完成签到,获得积分10
10秒前
无际的星空下完成签到,获得积分10
11秒前
gaoqg完成签到,获得积分10
12秒前
谢黎发布了新的文献求助10
13秒前
小马甲应助jovrtic采纳,获得10
13秒前
15秒前
twwm发布了新的文献求助10
15秒前
15秒前
本是个江湖散人完成签到,获得积分10
16秒前
风笛完成签到 ,获得积分10
17秒前
serena0_0发布了新的文献求助10
19秒前
还行啊完成签到,获得积分10
19秒前
arniu2008发布了新的文献求助10
19秒前
xuan完成签到,获得积分10
20秒前
树妖三三完成签到,获得积分10
21秒前
23秒前
我刚上小学完成签到,获得积分10
24秒前
27秒前
29秒前
迪仔完成签到 ,获得积分10
29秒前
香蕉觅云应助清风采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603540
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854271
捐赠科研通 4693471
什么是DOI,文献DOI怎么找? 2540831
邀请新用户注册赠送积分活动 1507052
关于科研通互助平台的介绍 1471806