All‐Sky Microwave Radiance Observation Operator Based on Deep Learning With Physical Constraints

光辉 辐射传输 遥感 大气辐射传输码 计算机科学 环境科学 数据同化 气象学 物理 地质学 光学
作者
Zeting Li,Wei Han,Xiaoze Xu,Xiuyu Sun,Hao Li
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (23) 被引量:1
标识
DOI:10.1029/2024jd042436
摘要

Abstract Satellite data assimilation relies on the radiative transfer models (RTMs) to establish the relationships between model state variables and satellite radiances. However, atmospheric radiative transfer calculations are computationally expensive, especially when involving multiple‐scattering calculations in cloudy areas. In recent years, deep learning (DL) models have been increasingly applied to emulate and accelerate physical models. This study, for the first time, explores DL techniques to emulate all‐sky radiative transfer in microwave bands. The FengYun‐3E (FY‐3E) Microwave Humidity Sounder‐2 (MWHS‐2) was selected as the target instrument due to its comprehensive spectral coverage, with the radiative transfer for TOVS scattering module (RTTOV‐SCATT) serving as the reference model. Three DL architectures were trained and compared, including multilayer perceptron (MLP), Bidirectional Long Short‐Term Memory with Attention (BiLSTM‐Attention), and Transformer. The BiLSTM‐Attention architecture demonstrated superior performance in both clear‐sky and cloudy radiance simulations. This may be attributed to its bidirectional recurrent structure resembling physical radiative transfer processes and the attention mechanism's ability to link MWHS‐2 channels with corresponding vertical layers. Although DL models achieve high accuracy in forward prediction, they often struggle with instability in Jacobian calculations. To address this issue, the trained BiLSTM‐Attention model was fine‐tuned using the reference model Jacobians as physical constraints. The fine‐tuned BiLSTM‐Attention model accurately characterized radiance sensitivities to temperature, water vapor, and hydrometeors under different cloud conditions, indicating its potential to serve as a radiance observation operator in data assimilation and physical retrieval applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
鹿时wan完成签到 ,获得积分10
1秒前
2秒前
2秒前
科研通AI6应助24豆采纳,获得10
2秒前
LXJY完成签到,获得积分10
3秒前
依风完成签到,获得积分10
3秒前
4秒前
刘十六完成签到 ,获得积分10
4秒前
星辰大海应助Rooo888采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
乐观小之发布了新的文献求助10
5秒前
铁马冰河入梦来完成签到 ,获得积分10
6秒前
sisi完成签到 ,获得积分10
6秒前
6秒前
6秒前
hadal完成签到,获得积分10
6秒前
zht发布了新的文献求助10
7秒前
7秒前
百里丹珍发布了新的文献求助10
8秒前
小杰完成签到,获得积分10
8秒前
9秒前
Joker发布了新的文献求助10
9秒前
罗兰小云完成签到 ,获得积分10
9秒前
10秒前
依风发布了新的文献求助10
10秒前
HDJ发布了新的文献求助10
11秒前
11秒前
11秒前
NexusExplorer应助ab采纳,获得10
12秒前
科研通AI2S应助乐观小之采纳,获得10
13秒前
科研之家发布了新的文献求助10
13秒前
哭泣的成协完成签到,获得积分10
13秒前
研友_VZG7GZ应助Liekkas采纳,获得10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572