已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

All‐Sky Microwave Radiance Observation Operator Based on Deep Learning With Physical Constraints

光辉 辐射传输 遥感 大气辐射传输码 计算机科学 环境科学 数据同化 气象学 物理 地质学 光学
作者
Zeting Li,Wei Han,Xiaoze Xu,Xiuyu Sun,Hao Li
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (23)
标识
DOI:10.1029/2024jd042436
摘要

Abstract Satellite data assimilation relies on the radiative transfer models (RTMs) to establish the relationships between model state variables and satellite radiances. However, atmospheric radiative transfer calculations are computationally expensive, especially when involving multiple‐scattering calculations in cloudy areas. In recent years, deep learning (DL) models have been increasingly applied to emulate and accelerate physical models. This study, for the first time, explores DL techniques to emulate all‐sky radiative transfer in microwave bands. The FengYun‐3E (FY‐3E) Microwave Humidity Sounder‐2 (MWHS‐2) was selected as the target instrument due to its comprehensive spectral coverage, with the radiative transfer for TOVS scattering module (RTTOV‐SCATT) serving as the reference model. Three DL architectures were trained and compared, including multilayer perceptron (MLP), Bidirectional Long Short‐Term Memory with Attention (BiLSTM‐Attention), and Transformer. The BiLSTM‐Attention architecture demonstrated superior performance in both clear‐sky and cloudy radiance simulations. This may be attributed to its bidirectional recurrent structure resembling physical radiative transfer processes and the attention mechanism's ability to link MWHS‐2 channels with corresponding vertical layers. Although DL models achieve high accuracy in forward prediction, they often struggle with instability in Jacobian calculations. To address this issue, the trained BiLSTM‐Attention model was fine‐tuned using the reference model Jacobians as physical constraints. The fine‐tuned BiLSTM‐Attention model accurately characterized radiance sensitivities to temperature, water vapor, and hydrometeors under different cloud conditions, indicating its potential to serve as a radiance observation operator in data assimilation and physical retrieval applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Crystal完成签到,获得积分20
1秒前
randylch完成签到,获得积分0
3秒前
失眠的香菇完成签到 ,获得积分10
4秒前
安内大大发布了新的文献求助10
4秒前
9秒前
努努完成签到 ,获得积分10
10秒前
诚心凝蝶完成签到,获得积分10
12秒前
SS完成签到,获得积分0
12秒前
夏日香气发布了新的文献求助30
12秒前
doctor2023完成签到,获得积分10
13秒前
望南发布了新的文献求助10
15秒前
王一g完成签到 ,获得积分10
16秒前
16秒前
18秒前
小透明发布了新的文献求助10
22秒前
在水一方应助顺心的舞蹈采纳,获得10
22秒前
令宏完成签到,获得积分10
27秒前
风鱼完成签到 ,获得积分20
30秒前
Koala完成签到,获得积分10
36秒前
36秒前
令宏发布了新的文献求助10
37秒前
向东东完成签到,获得积分10
43秒前
笑点低的硬币完成签到,获得积分10
44秒前
45秒前
47秒前
斜玉完成签到,获得积分10
48秒前
vivian发布了新的文献求助10
49秒前
Xieyusen发布了新的文献求助10
53秒前
tuanheqi发布了新的文献求助20
54秒前
冷静新烟发布了新的文献求助10
56秒前
iorpi完成签到,获得积分10
1分钟前
宇宇完成签到 ,获得积分10
1分钟前
太叔十三完成签到 ,获得积分10
1分钟前
1分钟前
刘天宇完成签到 ,获得积分10
1分钟前
充电宝应助焦糖采纳,获得10
1分钟前
zy完成签到 ,获得积分10
1分钟前
Omni完成签到 ,获得积分0
1分钟前
SPLjoker完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965486
求助须知:如何正确求助?哪些是违规求助? 3510790
关于积分的说明 11155096
捐赠科研通 3245285
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804171