All‐Sky Microwave Radiance Observation Operator Based on Deep Learning With Physical Constraints

光辉 辐射传输 遥感 大气辐射传输码 计算机科学 环境科学 数据同化 气象学 物理 地质学 光学
作者
Zeting Li,Wei Han,Xiaoze Xu,Xiuyu Sun,Hao Li
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (23) 被引量:2
标识
DOI:10.1029/2024jd042436
摘要

Abstract Satellite data assimilation relies on the radiative transfer models (RTMs) to establish the relationships between model state variables and satellite radiances. However, atmospheric radiative transfer calculations are computationally expensive, especially when involving multiple‐scattering calculations in cloudy areas. In recent years, deep learning (DL) models have been increasingly applied to emulate and accelerate physical models. This study, for the first time, explores DL techniques to emulate all‐sky radiative transfer in microwave bands. The FengYun‐3E (FY‐3E) Microwave Humidity Sounder‐2 (MWHS‐2) was selected as the target instrument due to its comprehensive spectral coverage, with the radiative transfer for TOVS scattering module (RTTOV‐SCATT) serving as the reference model. Three DL architectures were trained and compared, including multilayer perceptron (MLP), Bidirectional Long Short‐Term Memory with Attention (BiLSTM‐Attention), and Transformer. The BiLSTM‐Attention architecture demonstrated superior performance in both clear‐sky and cloudy radiance simulations. This may be attributed to its bidirectional recurrent structure resembling physical radiative transfer processes and the attention mechanism's ability to link MWHS‐2 channels with corresponding vertical layers. Although DL models achieve high accuracy in forward prediction, they often struggle with instability in Jacobian calculations. To address this issue, the trained BiLSTM‐Attention model was fine‐tuned using the reference model Jacobians as physical constraints. The fine‐tuned BiLSTM‐Attention model accurately characterized radiance sensitivities to temperature, water vapor, and hydrometeors under different cloud conditions, indicating its potential to serve as a radiance observation operator in data assimilation and physical retrieval applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助JUSTs0so采纳,获得10
刚刚
程风破浪完成签到,获得积分10
2秒前
搜集达人应助ZXC采纳,获得10
3秒前
无语的诗珊完成签到,获得积分10
5秒前
6秒前
6秒前
啦啦啦完成签到,获得积分10
7秒前
7秒前
9秒前
permanent完成签到,获得积分10
9秒前
活力沧海应助复杂的棒球采纳,获得10
10秒前
10秒前
谷云发布了新的文献求助10
11秒前
Kane完成签到,获得积分10
11秒前
33333发布了新的文献求助10
11秒前
针真滴完成签到 ,获得积分10
11秒前
12秒前
12秒前
xhsz1111发布了新的文献求助10
12秒前
Vipiggy完成签到,获得积分10
12秒前
ikun666完成签到,获得积分10
12秒前
舒心冷珍完成签到 ,获得积分10
12秒前
Henry完成签到,获得积分10
13秒前
jzt12138发布了新的文献求助10
15秒前
19秒前
唐艺尹发布了新的文献求助10
19秒前
上官若男应助鉴鸣盈采纳,获得10
19秒前
20秒前
21秒前
21秒前
灰色的乌完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
金金发布了新的文献求助10
26秒前
浩想碎觉发布了新的文献求助10
26秒前
27秒前
小草发布了新的文献求助10
28秒前
alan发布了新的文献求助10
30秒前
Jasper应助愉快的小土豆采纳,获得10
32秒前
滴滴答答发布了新的文献求助10
33秒前
天天发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145