All‐Sky Microwave Radiance Observation Operator Based on Deep Learning With Physical Constraints

光辉 辐射传输 遥感 大气辐射传输码 计算机科学 环境科学 数据同化 气象学 物理 地质学 光学
作者
Zeting Li,Wei Han,Xiaoze Xu,Xiuyu Sun,Hao Li
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (23) 被引量:1
标识
DOI:10.1029/2024jd042436
摘要

Abstract Satellite data assimilation relies on the radiative transfer models (RTMs) to establish the relationships between model state variables and satellite radiances. However, atmospheric radiative transfer calculations are computationally expensive, especially when involving multiple‐scattering calculations in cloudy areas. In recent years, deep learning (DL) models have been increasingly applied to emulate and accelerate physical models. This study, for the first time, explores DL techniques to emulate all‐sky radiative transfer in microwave bands. The FengYun‐3E (FY‐3E) Microwave Humidity Sounder‐2 (MWHS‐2) was selected as the target instrument due to its comprehensive spectral coverage, with the radiative transfer for TOVS scattering module (RTTOV‐SCATT) serving as the reference model. Three DL architectures were trained and compared, including multilayer perceptron (MLP), Bidirectional Long Short‐Term Memory with Attention (BiLSTM‐Attention), and Transformer. The BiLSTM‐Attention architecture demonstrated superior performance in both clear‐sky and cloudy radiance simulations. This may be attributed to its bidirectional recurrent structure resembling physical radiative transfer processes and the attention mechanism's ability to link MWHS‐2 channels with corresponding vertical layers. Although DL models achieve high accuracy in forward prediction, they often struggle with instability in Jacobian calculations. To address this issue, the trained BiLSTM‐Attention model was fine‐tuned using the reference model Jacobians as physical constraints. The fine‐tuned BiLSTM‐Attention model accurately characterized radiance sensitivities to temperature, water vapor, and hydrometeors under different cloud conditions, indicating its potential to serve as a radiance observation operator in data assimilation and physical retrieval applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助书记采纳,获得10
3秒前
科研通AI6应助paws采纳,获得10
4秒前
5秒前
柔弱的凝丝关注了科研通微信公众号
6秒前
zky发布了新的文献求助10
6秒前
6秒前
Orange应助kuny采纳,获得10
7秒前
7秒前
浮游应助东山德克士骑士采纳,获得10
8秒前
陈妙莹完成签到,获得积分20
8秒前
招财鱼完成签到 ,获得积分10
9秒前
丘比特应助竹沐鱼采纳,获得10
10秒前
NexusExplorer应助笨小孩采纳,获得10
12秒前
陈妙莹发布了新的文献求助10
12秒前
oiio完成签到,获得积分10
12秒前
MengYuan完成签到,获得积分10
13秒前
13秒前
cyanide关注了科研通微信公众号
16秒前
高高向日葵完成签到 ,获得积分10
17秒前
17秒前
18秒前
JerryZ发布了新的文献求助10
18秒前
19秒前
19秒前
竹沐鱼完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助10
21秒前
州州完成签到,获得积分10
21秒前
kuny发布了新的文献求助10
21秒前
李秉烛完成签到 ,获得积分10
21秒前
木木发布了新的文献求助30
22秒前
ycg发布了新的文献求助10
22秒前
bkagyin应助书记采纳,获得10
23秒前
24秒前
小马甲应助Kyle采纳,获得10
24秒前
大气灵枫发布了新的文献求助10
24秒前
25秒前
CodeCraft应助Anna采纳,获得10
25秒前
26秒前
28秒前
酷波er应助Qiaoqiao采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420777
求助须知:如何正确求助?哪些是违规求助? 4535755
关于积分的说明 14151514
捐赠科研通 4452650
什么是DOI,文献DOI怎么找? 2442416
邀请新用户注册赠送积分活动 1433847
关于科研通互助平台的介绍 1410975